30
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Continuous Exposure to a Novel Stressor Based on Water Aversion Induces Abnormal Circadian Locomotor Rhythms and Sleep-Wake Cycles in Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Psychological stressors prominently affect diurnal rhythms, including locomotor activity, sleep, blood pressure, and body temperature, in humans. Here, we found that a novel continuous stress imposed by the perpetual avoidance of water on a wheel (PAWW) affected several physiological diurnal rhythms in mice. One week of PAWW stress decayed robust circadian locomotor rhythmicity, while locomotor activity was evident even during the light period when the mice are normally asleep. Daytime activity was significantly upregulated, whereas nighttime activity was downregulated, resulting in a low amplitude of activity. Total daily activity gradually decreased with increasing exposure to PAWW stress. The mice could be exposed to PAWW stress for over 3 weeks without adaptation. Furthermore, continuous PAWW stress enhanced food intake, but decreased body weight and plasma leptin levels, indicating that sleep loss and PAWW stress altered the energy balance in these mice. The diurnal rhythm of corticosterone levels was not severely affected. The body temperature rhythm was diurnal in the stressed mice, but significantly dysregulated during the dark period. Plasma catecholamines were elevated in the stressed mice. Continuous PAWW stress reduced the duration of daytime sleep, especially during the first half of the light period, and increased nighttime sleepiness. Continuous PAWW stress also simultaneously obscured sleep/wake and locomotor activity rhythms compared with control mice. These sleep architecture phenotypes under stress are similar to those of patients with insomnia. The stressed mice could be entrained to the light/dark cycle, and when they were transferred to constant darkness, they exhibited a free-running circadian rhythm with a timing of activity onset predicted by the phase of their entrained rhythms. Circadian gene expression in the liver and muscle was unaltered, indicating that the peripheral clocks in these tissues remained intact.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: not found
          • Article: not found

          System-level identification of transcriptional circuits underlying mammalian circadian clocks.

          Mammalian circadian clocks consist of complexly integrated regulatory loops, making it difficult to elucidate them without both the accurate measurement of system dynamics and the comprehensive identification of network circuits. Toward a system-level understanding of this transcriptional circuitry, we identified clock-controlled elements on 16 clock and clock-controlled genes in a comprehensive surveillance of evolutionarily conserved cis elements and measurement of their transcriptional dynamics. Here we report the roles of E/E' boxes, DBP/E4BP4 binding elements and RevErbA/ROR binding elements in nine, seven and six genes, respectively. Our results indicate that circadian transcriptional circuits are governed by two design principles: regulation of E/E' boxes and RevErbA/ROR binding elements follows a repressor-precedes-activator pattern, resulting in delayed transcriptional activity, whereas regulation of DBP/E4BP4 binding elements follows a repressor-antiphasic-to-activator mechanism, which generates high-amplitude transcriptional activity. Our analysis further suggests that regulation of E/E' boxes is a topological vulnerability in mammalian circadian clocks, a concept that has been functionally verified using in vitro phenotype assay systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Circadian genes, rhythms and the biology of mood disorders.

            For many years, researchers have suggested that abnormalities in circadian rhythms may underlie the development of mood disorders such as bipolar disorder (BPD), major depression and seasonal affective disorder (SAD). Furthermore, some of the treatments that are currently employed to treat mood disorders are thought to act by shifting or "resetting" the circadian clock, including total sleep deprivation (TSD) and bright light therapy. There is also reason to suspect that many of the mood stabilizers and antidepressants used to treat these disorders may derive at least some of their therapeutic efficacy by affecting the circadian clock. Recent genetic, molecular and behavioral studies implicate individual genes that make up the clock in mood regulation. As well, important functions of these genes in brain regions and neurotransmitter systems associated with mood regulation are becoming apparent. In this review, the evidence linking circadian rhythms and mood disorders, and what is known about the underlying biology of this association, is presented.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Sleep deprivation as a neurobiologic and physiologic stressor: Allostasis and allostatic load.

              Sleep has important homeostatic functions, and sleep deprivation is a stressor that has consequences for the brain, as well as many body systems. Whether sleep deprivation is due to anxiety, depression, or a hectic lifestyle, there are consequences of chronic sleep deprivation that impair brain functions and contribute to allostatic load throughout the body. Allostatic load refers to the cumulative wear and tear on body systems caused by too much stress and/or inefficient management of the systems that promote adaptation through allostasis. Chronic sleep deprivation in young healthy volunteers has been reported to increase appetite and energy expenditure, increase levels of proinflammatory cytokines, decrease parasympathetic and increase sympathetic tone, increase blood pressure, increase evening cortisol levels, as well as elevate insulin and blood glucose. Repeated stress in animal models causes brain regions involved in memory and emotions, such as hippocampus, amygdala, and prefrontal cortex, to undergo structural remodeling with the result that memory is impaired and anxiety and aggression are increased. Structural and functional magnetic resonance imaging studies in depression and Cushing's disease, as well as anxiety disorders, provide evidence that the human brain may be similarly affected. Moreover, brain regions such as the hippocampus are sensitive to glucose and insulin, and both type 1 and type 2 diabetes mellitus are associated with cognitive impairment and (for type 2 diabetes mellitus) increased risk for Alzheimer's disease. Animal models of chronic sleep deprivation indicate that memory is impaired along with depletion of glycogen stores and increases in oxidative stress and free radical production. Taken together, these changes in brain and body are further evidence that sleep deprivation is a chronic stressor and that the resulting allostatic load can contribute to cognitive problems, which can, in turn, further exacerbate pathways that lead to disease.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, USA )
                1932-6203
                2013
                30 January 2013
                : 8
                : 1
                : e55452
                Affiliations
                [1 ]Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
                [2 ]Agricultural Bioinformatics Research Unit, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
                Vanderbilt University, United States of America
                Author notes

                Competing Interests: This study was partially funded by a Yamada Bee Farm Grant for Honeybee Research. There are no patents, products in development or marketed products to declare. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

                Conceived and designed the experiments: KM KO. Performed the experiments: KM NI SO KO. Analyzed the data: KM NI SO KK KO. Contributed reagents/materials/analysis tools: KM KO. Wrote the paper: KM.

                Article
                PONE-D-12-21310
                10.1371/journal.pone.0055452
                3559439
                23383193
                f2064cc0-6fee-4f9e-a4fa-c5fc01bbf193
                Copyright @ 2013

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 19 July 2012
                : 29 December 2012
                Page count
                Pages: 10
                Funding
                This study was supported by operational subsidies from AIST, and a Grant-in Aid for Scientific Research KAKENHI 23607040 to K. Miyazaki from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan. The study was also partially funded by a Yamada Bee Farm Grant for Honeybee Research ( http://grant.bee-lab.jp/) to K. Oishi. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
                Categories
                Research Article
                Biology
                Anatomy and Physiology
                Physiological Processes
                Chronobiology
                Sleep
                Model Organisms
                Animal Models
                Mouse
                Medicine
                Anatomy and Physiology
                Physiological Processes
                Chronobiology
                Social and Behavioral Sciences
                Psychology
                Psychological Stress

                Uncategorized
                Uncategorized

                Comments

                Comment on this article