2
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Genetic transformation of the green alga—Chlamydomonas reinhardtii by Agrobacterium tumefaciens

      , , , ,
      Plant Science
      Elsevier BV

      Read this article at

      ScienceOpenPublisher
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references11

          • Record: found
          • Abstract: found
          • Article: not found

          Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA.

          A large number of morphologically normal, fertile, transgenic rice plants were obtained by co-cultivation of rice tissues with Agrobacterium tumefaciens. The efficiency of transformation was similar to that obtained by the methods used routinely for transformation of dicotyledons with the bacterium. Stable integration, expression and inheritance of transgenes were demonstrated by molecular and genetic analysis of transformants in the R0, R1 and R2 generations. Sequence analysis revealed that the boundaries of the T-DNA in transgenic rice plants were essentially identical to those in transgenic dicotyledons. Calli induced from scutella were very good starting materials. A strain of A. tumefaciens that carried a so-called 'super-binary' vector gave especially high frequencies of transformation of various cultivars of japonica rice that included Koshihikari, which normally shows poor responses in tissue culture.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Assaying chimeric genes in plants: The GUS gene fusion system

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Agrobacterium tumefaciens-mediated transformation of filamentous fungi.

              Agrobacterium tumefaciens transfers part of its Ti plasmid, the T-DNA, to plant cells during tumorigenesis. It is routinely used for the genetic modification of a wide range of plant species. We report that A. tumefaciens can also transfer its T-DNA efficiently to the filamentous fungus Aspergillus awamori, demonstrating DNA transfer between a prokaryote and a filamentous fungus. We transformed both protoplasts and conidia with frequencies that were improved up to 600-fold as compared with conventional techniques for transformation of A. awamori protoplasts. The majority of the A. awamori transformants contained a single T-DNA copy randomly integrated at a chromosomal locus. The T-DNA integrated into the A. awamori genome in a manner similar to that described for plants. We also transformed a variety of other filamentous fungi, including Aspergillus niger, Fusarium venenatum, Trichoderma reesei, Colletotrichum gloeosporioides, Neurospora crassa, and the mushroom Agaricus bisporus, demonstrating that transformation using A. tumefaciens is generally applicable to filamentous fungi.
                Bookmark

                Author and article information

                Journal
                Plant Science
                Plant Science
                Elsevier BV
                01689452
                March 2004
                March 2004
                : 166
                : 3
                : 731-738
                Article
                10.1016/j.plantsci.2003.11.012
                f21ac982-6839-426e-a95e-b9ed9811a2bc
                © 2004

                http://www.elsevier.com/tdm/userlicense/1.0/

                History

                Comments

                Comment on this article