56
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Ocular Surface Development and Gene Expression

      review-article
      *
      Journal of Ophthalmology
      Hindawi Publishing Corporation

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The ocular surface—a continuous epithelial surface with regional specializations including the surface and glandular epithelia of the cornea, conjunctiva, and lacrimal and meibomian glands connected by the overlying tear film—plays a central role in vision. Molecular and cellular events involved in embryonic development, postnatal maturation, and maintenance of the ocular surface are precisely regulated at the level of gene expression by a well-coordinated network of transcription factors. A thorough appreciation of the biological characteristics of the ocular surface in terms of its gene expression profiles and their regulation provides us with a valuable insight into the pathophysiology of various blinding disorders that disrupt the normal development, maturation, and/or maintenance of the ocular surface. This paper summarizes the current status of our knowledge related to the ocular surface development and gene expression and the contribution of different transcription factors to this process.

          Related collections

          Most cited references243

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome.

          Insulator elements affect gene expression by preventing the spread of heterochromatin and restricting transcriptional enhancers from activation of unrelated promoters. In vertebrates, insulator's function requires association with the CCCTC-binding factor (CTCF), a protein that recognizes long and diverse nucleotide sequences. While insulators are critical in gene regulation, only a few have been reported. Here, we describe 13,804 CTCF-binding sites in potential insulators of the human genome, discovered experimentally in primary human fibroblasts. Most of these sequences are located far from the transcriptional start sites, with their distribution strongly correlated with genes. The majority of them fit to a consensus motif highly conserved and suitable for predicting possible insulators driven by CTCF in other vertebrate genomes. In addition, CTCF localization is largely invariant across different cell types. Our results provide a resource for investigating insulator function and possible other general and evolutionarily conserved activities of CTCF sites.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: implications on epithelial stem cells.

            Despite the obvious importance of epithelial stem cells in tissue homeostasis and tumorigenesis, little is known about their specific location or biological characteristics. Using 3H-thymidine labeling, we have identified a subpopulation of corneal epithelial basal cells, located in the peripheral cornea in a region called limbus, that are normally slow cycling, but can be stimulated to proliferate in response to wounding and to a tumor promotor, TPA. No such cells can be detected in the central corneal epithelium, suggesting that corneal epithelial stem cells are located in the limbus. A comparison of various types of epithelial stem cells revealed a common set of features, including their preferred location, pigment protection, and growth properties, which presumably play a crucial role in epithelial stem cell function.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Pax6 is required for the multipotent state of retinal progenitor cells.

              The molecular mechanisms mediating the retinogenic potential of multipotent retinal progenitor cells (RPCs) are poorly defined. Prior to initiating retinogenesis, RPCs express a limited set of transcription factors implicated in the evolutionary ancient genetic network that initiates eye development. We elucidated the function of one of these factors, Pax6, in the RPCs of the intact developing eye by conditional gene targeting. Upon Pax6 inactivation, the potential of RPCs becomes entirely restricted to only one of the cell fates normally available to RPCs, resulting in the exclusive generation of amacrine interneurons. Our findings demonstrate furthermore that Pax6 directly controls the transcriptional activation of retinogenic bHLH factors that bias subsets of RPCs toward the different retinal cell fates, thereby mediating the full retinogenic potential of RPCs.
                Bookmark

                Author and article information

                Journal
                J Ophthalmol
                J Ophthalmol
                JOP
                Journal of Ophthalmology
                Hindawi Publishing Corporation
                2090-004X
                2090-0058
                2013
                21 February 2013
                : 2013
                : 103947
                Affiliations
                Departments of Ophthalmology, and Cell Biology and Physiology, McGowan Institute of Regenerative Medicine, University of Pittsburgh School of Medicine, 203 Lothrop Street, Room 1025, Pittsburgh, PA 15213, USA
                Author notes
                *Shivalingappa K. Swamynathan: swamynathansk@ 123456upmc.edu

                Academic Editor: Terri L. Young

                Article
                10.1155/2013/103947
                3595720
                23533700
                f21dfbec-30ba-4f92-b562-b4d3ee287f80
                Copyright © 2013 Shivalingappa K. Swamynathan.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 3 October 2012
                : 16 January 2013
                Categories
                Review Article

                Ophthalmology & Optometry
                Ophthalmology & Optometry

                Comments

                Comment on this article