24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Human activities might influence oncogenic processes in wild animal populations

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Transport and release of chemicals from plastics to the environment and to wildlife.

          Plastics debris in the marine environment, including resin pellets, fragments and microscopic plastic fragments, contain organic contaminants, including polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons, petroleum hydrocarbons, organochlorine pesticides (2,2'-bis(p-chlorophenyl)-1,1,1-trichloroethane, hexachlorinated hexanes), polybrominated diphenylethers, alkylphenols and bisphenol A, at concentrations from sub ng g(-1) to microg g(-1). Some of these compounds are added during plastics manufacture, while others adsorb from the surrounding seawater. Concentrations of hydrophobic contaminants adsorbed on plastics showed distinct spatial variations reflecting global pollution patterns. Model calculations and experimental observations consistently show that polyethylene accumulates more organic contaminants than other plastics such as polypropylene and polyvinyl chloride. Both a mathematical model using equilibrium partitioning and experimental data have demonstrated the transfer of contaminants from plastic to organisms. A feeding experiment indicated that PCBs could transfer from contaminated plastics to streaked shearwater chicks. Plasticizers, other plastics additives and constitutional monomers also present potential threats in terrestrial environments because they can leach from waste disposal sites into groundwater and/or surface waters. Leaching and degradation of plasticizers and polymers are complex phenomena dependent on environmental conditions in the landfill and the chemical properties of each additive. Bisphenol A concentrations in leachates from municipal waste disposal sites in tropical Asia ranged from sub microg l(-1) to mg l(-1) and were correlated with the level of economic development.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Obesity and cancer risk: evidence, mechanisms, and recommendations

            Obesity, a growing health problem worldwide, has been associated with the metabolic syndrome, diabetes, cardiovascular disease, hypertension, and other chronic diseases. Recently, the obesity–cancer link has received much attention. Epidemiological studies have shown that obesity is also associated with increased risk of several cancer types, including colon, breast, endometrium, liver, kidney, esophagus, gastric, pancreatic, gallbladder, and leukemia, and can also lead to poorer treatment and increased cancer-related mortality. Biological mechanisms underlying the relationship between obesity and cancer are not well understood. They include modulation of energy balance and calorie restriction, growth factors, multiple signaling pathways, and inflammatory processes. Key among the signaling pathways linking obesity and cancer is the PI3K/Akt/mTOR cascade, which is a target of many of the obesity-associated factors and regulates cell proliferation and survival. Understanding the molecular and cellular mechanisms of the obesity–cancer connection is important in developing potential therapeutics. The link between obesity and cancer underscores the recommendation to maintain a healthy body weight throughout life as one of the most important ways to protect against cancer.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Linking anthropogenic resources to wildlife–pathogen dynamics: a review and meta-analysis

              Urbanisation and agriculture cause declines for many wildlife, but some species benefit from novel resources, especially food, provided in human-dominated habitats. Resulting shifts in wildlife ecology can alter infectious disease dynamics and create opportunities for cross-species transmission, yet predicting host–pathogen responses to resource provisioning is challenging. Factors enhancing transmission, such as increased aggregation, could be offset by better host immunity due to improved nutrition. Here, we conduct a review and meta-analysis to show that food provisioning results in highly heterogeneous infection outcomes that depend on pathogen type and anthropogenic food source. We also find empirical support for behavioural and immune mechanisms through which human-provided resources alter host exposure and tolerance to pathogens. A review of recent theoretical models of resource provisioning and infection dynamics shows that changes in host contact rates and immunity produce strong non-linear responses in pathogen invasion and prevalence. By integrating results of our meta-analysis back into a theoretical framework, we find provisioning amplifies pathogen invasion under increased host aggregation and tolerance, but reduces transmission if provisioned food decreases dietary exposure to parasites. These results carry implications for wildlife disease management and highlight areas for future work, such as how resource shifts might affect virulence evolution.
                Bookmark

                Author and article information

                Journal
                Nature Ecology & Evolution
                Nat Ecol Evol
                Springer Nature
                2397-334X
                May 21 2018
                Article
                10.1038/s41559-018-0558-7
                29784981
                f2200dbe-4868-4e36-88b0-1d8f31eaa5c9
                © 2018

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article