46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bone Mineralization in Celiac Disease

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Evidence indicates a well-established relationship between low bone mineral density (BMD) and celiac disease (CD), but data on the pathogenesis of bone derangement in this setting are still inconclusive. In patients with symptomatic CD, low BMD appears to be directly related to the intestinal malabsorption. Adherence to a strict gluten-free diet (GFD) will reverse the histological changes in the intestine and also the biochemical evidence of calcium malabsorption, resulting in rapid increase of BMD. Nevertheless, GFD improves BMD but does not normalize it in all patients, even after the recovery of intestinal mucosa. Other mechanisms of bone injury than calcium and vitamin D malabsorption are thought to be involved, such as proinflammatory cytokines, parathyroid function abnormalities, and misbalanced bone remodeling factors, most of all represented by the receptor activator of nuclear factor B/receptor activator of nuclear factor B-ligand/osteoprotegerin system. By means of dual-energy X-ray absorptiometry (DXA), it is now rapid and easy to obtain semiquantitative values of BMD. However, the question is still open about who and when submit to DXA evaluation in CD, in order to estimate risk of fractures. Furthermore, additional information on the role of nutritional supplements and alternative therapies is needed.

          Related collections

          Most cited references75

          • Record: found
          • Abstract: found
          • Article: not found

          Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures.

          To determine the ability of measurements of bone density in women to predict later fractures. Meta-analysis of prospective cohort studies published between 1985 and end of 1994 with a baseline measurement of bone density in women and subsequent follow up for fractures. For comparative purposes, we also reviewed case control studies of hip fractures published between 1990 and 1994. Eleven separate study populations with about 90,000 person years of observation time and over 2000 fractures. Relative risk of fracture for a decrease in bone mineral density of one standard deviation below age adjusted mean. All measuring sites had similar predictive abilities (relative risk 1.5 (95% confidence interval 1.4 to 1.6)) for decrease in bone mineral density except for measurement at spine for predicting vertebral fractures (relative risk 2.3 (1.9 to 2.8)) and measurement at hip for hip fractures (2.6 (2.0 to 3.5)). These results are in accordance with results of case-control studies. Predictive ability of decrease in bone mass was roughly similar to (or, for hip or spine measurements, better than) that of a 1 SD increase in blood pressure for stroke and better than a 1 SD increase in serum cholesterol concentration for cardiovascular disease. Measurements of bone mineral density can predict fracture risk but cannot identify individuals who will have a fracture. We do not recommend a programme of screening menopausal women for osteoporosis by measuring bone density.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Bone mineralization density distribution in health and disease.

            Human cortical and trabecular bones are formed by individual osteons and bone packets, respectively, which are produced at different time points during the (re)modeling cycle by the coupled activity of bone cells. This leads to a heterogeneously mineralized bone material with a characteristic bone mineralization density distribution (BMDD) reflecting bone turnover, mineralization kinetics and average bone matrix age. In contrast to BMD, which is an estimate of the total amount of mineral in a scanned area of whole bone, BMDD describes the local mineral content of the bone matrix throughout the sample. Moreover, the mineral content of the bone matrix is playing a pivotal role in tuning its stiffness, strength and toughness. BMDD of healthy individuals shows a remarkably small biological variance suggesting the existence of an evolutionary optimum with respect to its biomechanical performance. Hence, any deviations from normal BMDD due to either disease and/or treatment might be of significant biological and clinical relevance. The development of appropriate methods to sensitively measure the BMDD in bone biopsies led to numerous applications of BMDD in the evaluation of diagnosis and treatment of bone diseases, while advancing the understanding of the bone material, concomitantly. For example, transiliacal bone biopsies of postmenopausal osteoporotic women were found to have mostly lower mineralization densities than normal, which were partly associated by an increase of bone turnover, but also caused by calcium and Vit-D deficiency. Antiresorptive therapy causes an increase of degree and homogeneity of mineralization within three years of treatment, while normal mineralization levels are not exceeded. In contrast, anabolic therapy like PTH decreases the degree and homogeneity of matrix mineralization, at least transiently. Osteogenesis imperfecta is generally associated with increased matrix mineralization contributing to the brittleness of bone in this disease, though bone turnover is usually increased suggesting an alteration in the mineralization kinetics. Furthermore, BMDD measurements combined with other scanning techniques like nanoindentation, Fourier transform infrared spectroscopy and small angle X-ray scattering can provide important insights into the structure-function relation of the bone matrix, and ultimately a better prediction of fracture risk in diseases, and after treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Clinical use of bone densitometry: scientific review.

              Osteoporosis causes substantial morbidity and costs $13.8 billion annually in the United States. Measurement of bone mass by densitometry is a primary part of diagnosing osteoporosis and deciding a preventive treatment course. Bone mineral densitometry has become more widely available and commonly used in practice. To review evidence about the value of various clinical applications of bone densitometry. A MEDLINE search was performed to update previous meta-analyses of the relationship between various measurements of bone density and risk of vertebral and hip fracture. We used data from the prospective Study of Osteoporotic Fractures to estimate risk of fracture from bone density and age in postmenopausal women. When available, meta-analyses and systematic reviews are emphasized in the review. Bone mineral density (BMD) predicts fracture and can be used in combination with age to estimate absolute risk of fractures in postmenopausal white women. Hip BMD predicts hip fracture more strongly than other measurements of BMD. There are insufficient data to translate BMD results into risk of fracture for men and nonwhite women. The benefits of treatments to prevent fractures depend on BMD: women with osteoporosis have a greater risk of fractures and greater benefit from treatments than women without osteoporosis. Guidelines based on systematic reviews and a cost-effectiveness analysis have suggested that it is worthwhile to measure BMD in white women older than 65 years and perhaps to use risk factors to select younger postmenopausal women for densitometry. Other potential clinical applications of BMD that have not yet been adequately studied include screening men or nonwhite women, monitoring BMD in patients receiving treatment, and using BMD to identify patients who should be evaluated for secondary causes of osteoporosis.
                Bookmark

                Author and article information

                Journal
                Gastroenterol Res Pract
                Gastroenterol Res Pract
                GRP
                Gastroenterology Research and Practice
                Hindawi Publishing Corporation
                1687-6121
                1687-630X
                2012
                18 April 2012
                : 2012
                : 198025
                Affiliations
                Department of Health Science, University of Catanzaro “Magna Graecia”, University Campus of Germaneto, Viale Europa, 88100 Catanzaro, Italy
                Author notes
                *Francesco Luzza: luzza@ 123456unicz.it

                Academic Editor: Govind K. Makharia

                Article
                10.1155/2012/198025
                3378976
                22737164
                f22596fd-faa0-4bb8-9b35-1096f2444845
                Copyright © 2012 Tiziana Larussa et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 6 January 2012
                : 12 March 2012
                : 3 April 2012
                Categories
                Review Article

                Gastroenterology & Hepatology
                Gastroenterology & Hepatology

                Comments

                Comment on this article