50
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Fabrication of 3D Oriented MOF Micropatterns with Anisotropic Fluorescent Properties

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Micropatterning crystalline materials with oriented pores is necessary for the fabrication of devices with anisotropic properties. Crystalline and porous metal–organic frameworks (MOFs) are ideal materials as their chemical and structural mutability enables precise tuning of functional properties for applications ranging from microelectronics to photonics. Herein, a patternable oriented MOF film is designed: by using a photomask under X‐ray exposure, the MOF film decomposes in the irradiated areas, remaining intact in the unexposed regions. The MOF film acts simultaneously as a resist and as functional porous material. While the heteroepitaxial growth from aligned Cu(OH) 2 nanobelts is used to deposit oriented MOF films, the sensitivity to radiation is achieved by integrating a brominated dicarboxylate ligand (Br 2BDC) into a copper‐based MOF Cu 2L 2DABCO (DABCO = 1,4‐diazabicyclo[2.2.2]octane; L = BDC/Br 2BDC). The lithographed samples act as diffraction gratings upon irradiation with a laser, thus confirming the quality of the extended MOF micropattern. Furthermore, the oriented MOF patterns are functionalized with fluorescent dyes. As a result, by rotating the polarization angle of the laser excitation, the alignment of the dye in the MOF is demonstrated. By controlling the functional response to light, this MOF patterning protocol can be used for the microfabrication of optical components for photonic devices.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          Functional Porous Coordination Polymers

          The chemistry of the coordination polymers has in recent years advanced extensively, affording various architectures, which are constructed from a variety of molecular building blocks with different interactions between them. The next challenge is the chemical and physical functionalization of these architectures, through the porous properties of the frameworks. This review concentrates on three aspects of coordination polymers: 1). the use of crystal engineering to construct porous frameworks from connectors and linkers ("nanospace engineering"), 2). characterizing and cataloging the porous properties by functions for storage, exchange, separation, etc., and 3). the next generation of porous functions based on dynamic crystal transformations caused by guest molecules or physical stimuli. Our aim is to present the state of the art chemistry and physics of and in the micropores of porous coordination polymers.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Metal-organic frameworks: functional luminescent and photonic materials for sensing applications.

            Metal-organic frameworks (MOFs) or porous coordination polymers (PCPs) are open, crystalline supramolecular coordination architectures with porous facets. These chemically tailorable framework materials are the subject of intense and expansive research, and are particularly relevant in the fields of sensory materials and device engineering. As the subfield of MOF-based sensing has developed, many diverse chemical functionalities have been carefully and rationally implanted into the coordination nanospace of MOF materials. MOFs with widely varied fluorometric sensing properties have been developed using the design principles of crystal engineering and structure-property correlations, resulting in a large and rapidly growing body of literature. This work has led to advancements in a number of crucial sensing domains, including biomolecules, environmental toxins, explosives, ionic species, and many others. Furthermore, new classes of MOF sensory materials utilizing advanced signal transduction by devices based on MOF photonic crystals and thin films have been developed. This comprehensive review summarizes the topical developments in the field of luminescent MOF and MOF-based photonic crystals/thin film sensory materials.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Computer control of microscopes using µManager.

              With the advent of digital cameras and motorization of mechanical components, computer control of microscopes has become increasingly important. Software for microscope image acquisition should not only be easy to use, but also enable and encourage novel approaches. The open-source software package µManager aims to fulfill those goals. This unit provides step-by-step protocols describing how to get started working with µManager, as well as some starting points for advanced use of the software. © 2010 by John Wiley & Sons, Inc.
                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Advanced Materials
                Advanced Materials
                Wiley
                0935-9648
                1521-4095
                June 2023
                May 02 2023
                June 2023
                : 35
                : 25
                Affiliations
                [1 ] Institute of Physical and Theoretical Chemistry Graz University of Technology Graz 8010 Austria
                [2 ] Institute of Inorganic Chemistry Graz University of Technology Graz 8010 Austria
                [3 ] Department of Physics University of Fribourg Fribourg CH‐1700 Switzerland
                [4 ] Istituto Officina dei Materiali CNR Edificio MM‐SS Basovizza Trieste 34149 Italy
                [5 ] Centre for Membrane Separations, Adsorption, Catalysis and Spectroscopy for Sustainable Solutions (cMACS) KU Leuven Leuven 3001 Belgium
                [6 ] Department of Chemistry The University of Adelaide Adelaide South Australia 5005 Australia
                [7 ] Institute of Analytical Chemistry and Food Chemistry Graz University of Technology Graz 8010 Austria
                [8 ] Institute of Molecular Biosciences Field of Excellence BioHealth University of Graz Graz 8010 Austria
                Article
                10.1002/adma.202211478
                f226209c-1c5b-429c-80c9-d16d2d5e1cbc
                © 2023

                http://creativecommons.org/licenses/by/4.0/

                History

                Comments

                Comment on this article