37
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Delay aversion but preference for large and rare rewards in two choice tasks: implications for the measurement of self-control parameters

      research-article
      1 , , 1
      BMC Neuroscience
      BioMed Central

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Impulsivity is defined as intolerance/aversion to waiting for reward. In intolerance-to-delay (ID) protocols, animals must choose between small/soon (SS) versus large/late (LL) rewards. In the probabilistic discount (PD) protocols, animals are faced with choice between small/sure (SS) versus large/luck-linked (LLL) rewards. It has been suggested that PD protocols also measure impulsivity, however, a clear dissociation has been reported between delay and probability discounting.

          Results

          Wistar adolescent rats (30- to 46-day-old) were tested using either protocol in drug-free state. In the ID protocol, animals showed a marked shift from LL to SS reward when delay increased, and this despite adverse consequences on the total amount of food obtained. In the PD protocol, animals developed a stable preference for LLL reward, and maintained it even when SS and LLL options were predicted and demonstrated to become indifferent. We demonstrate a clear dissociation between these two protocols. In the ID task, the aversion to delay was anti-economical and reflected impulsivity. In the PD task, preference for large reward was maintained despite its uncertain delivery, suggesting a strong attraction for unitary rewards of great magnitude.

          Conclusion

          Uncertain delivery generated no aversion, when compared to delays producing an equivalent level of large-reward rarefaction. The PD task is suggested not to reflect impulsive behavior, and to generate patterns of choice that rather resemble the features of gambling. In summary, present data do indicate the need to interpret choice behavior in ID and PD protocols differently.

          Related collections

          Most cited references42

          • Record: found
          • Abstract: found
          • Article: not found

          The adolescent brain and age-related behavioral manifestations.

          L Spear (2000)
          To successfully negotiate the developmental transition between youth and adulthood, adolescents must maneuver this often stressful period while acquiring skills necessary for independence. Certain behavioral features, including age-related increases in social behavior and risk-taking/novelty-seeking, are common among adolescents of diverse mammalian species and may aid in this process. Reduced positive incentive values from stimuli may lead adolescents to pursue new appetitive reinforcers through drug use and other risk-taking behaviors, with their relative insensitivity to drugs supporting comparatively greater per occasion use. Pubertal increases in gonadal hormones are a hallmark of adolescence, although there is little evidence for a simple association of these hormones with behavioral change during adolescence. Prominent developmental transformations are seen in prefrontal cortex and limbic brain regions of adolescents across a variety of species, alterations that include an apparent shift in the balance between mesocortical and mesolimbic dopamine systems. Developmental changes in these stressor-sensitive regions, which are critical for attributing incentive salience to drugs and other stimuli, likely contribute to the unique characteristics of adolescence.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Separate neural systems value immediate and delayed monetary rewards.

            When humans are offered the choice between rewards available at different points in time, the relative values of the options are discounted according to their expected delays until delivery. Using functional magnetic resonance imaging, we examined the neural correlates of time discounting while subjects made a series of choices between monetary reward options that varied by delay to delivery. We demonstrate that two separate systems are involved in such decisions. Parts of the limbic system associated with the midbrain dopamine system, including paralimbic cortex, are preferentially activated by decisions involving immediately available rewards. In contrast, regions of the lateral prefrontal cortex and posterior parietal cortex are engaged uniformly by intertemporal choices irrespective of delay. Furthermore, the relative engagement of the two systems is directly associated with subjects' choices, with greater relative fronto-parietal activity when subjects choose longer term options.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Varieties of impulsivity.

              J Evenden (1999)
              The concept of impulsivity covers a wide range of "actions that are poorly conceived, prematurely expressed, unduly risky, or inappropriate to the situation and that often result in undesirable outcomes". As such it plays an important role in normal behaviour, as well as, in a pathological form, in many kinds of mental illness such as mania, personality disorders, substance abuse disorders and attention deficit/hyperactivity disorder. Although evidence from psychological studies of human personality suggests that impulsivity may be made up of several independent factors, this has not made a major impact on biological studies of impulsivity. This may be because there is little unanimity as to which these factors are. The present review summarises evidence for varieties of impulsivity from several different areas of research: human psychology, psychiatry and animal behaviour. Recently, a series of psychopharmacological studies has been carried out by the present author and colleagues using methods proposed to measure selectively different aspects of impulsivity. The results of these studies suggest that several neurochemical mechanisms can influence impulsivity, and that impulsive behaviour has no unique neurobiological basis. Consideration of impulsivity as the result of several different, independent factors which interact to modulate behaviour may provide better insight into the pathology than current hypotheses based on serotonergic underactivity.
                Bookmark

                Author and article information

                Journal
                BMC Neurosci
                BMC Neuroscience
                BioMed Central (London )
                1471-2202
                2006
                23 June 2006
                : 7
                : 52
                Affiliations
                [1 ]Behavioural Neuroscience Section, Dept. Cell Biology & Neurosciences, Istituto Superiore di Sanità, Roma, Italy
                Article
                1471-2202-7-52
                10.1186/1471-2202-7-52
                1559633
                16796752
                f23516c0-8c5b-4b27-8867-3cf9d8c00b80
                Copyright © 2006 Adriani and Laviola; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 May 2006
                : 23 June 2006
                Categories
                Research Article

                Neurosciences
                Neurosciences

                Comments

                Comment on this article