Blog
About

44
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      TmpL, a Transmembrane Protein Required for Intracellular Redox Homeostasis and Virulence in a Plant and an Animal Fungal Pathogen

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The regulation of intracellular levels of reactive oxygen species (ROS) is critical for developmental differentiation and virulence of many pathogenic fungi. In this report we demonstrate that a novel transmembrane protein, TmpL, is necessary for regulation of intracellular ROS levels and tolerance to external ROS, and is required for infection of plants by the necrotroph Alternaria brassicicola and for infection of mammals by the human pathogen Aspergillus fumigatus. In both fungi, tmpL encodes a predicted hybrid membrane protein containing an AMP-binding domain, six putative transmembrane domains, and an experimentally-validated FAD/NAD(P)-binding domain. Localization and gene expression analyses in A. brassicicola indicated that TmpL is associated with the Woronin body, a specialized peroxisome, and strongly expressed during conidiation and initial invasive growth in planta. A. brassicicola and A. fumigatus ΔtmpL strains exhibited abnormal conidiogenesis, accelerated aging, enhanced oxidative burst during conidiation, and hypersensitivity to oxidative stress when compared to wild-type or reconstituted strains. Moreover, A. brassicicola ΔtmpL strains, although capable of initial penetration, exhibited dramatically reduced invasive growth on Brassicas and Arabidopsis. Similarly, an A. fumigatus ΔtmpL mutant was dramatically less virulent than the wild-type and reconstituted strains in a murine model of invasive aspergillosis. Constitutive expression of the A. brassicicola yap1 ortholog in an A. brassicicola ΔtmpL strain resulted in high expression levels of genes associated with oxidative stress tolerance. Overexpression of yap1 in the ΔtmpL background complemented the majority of observed developmental phenotypic changes and partially restored virulence on plants. Yap1-GFP fusion strains utilizing the native yap1 promoter exhibited constitutive nuclear localization in the A. brassicicola ΔtmpL background. Collectively, we have discovered a novel protein involved in the virulence of both plant and animal fungal pathogens. Our results strongly suggest that dysregulation of oxidative stress homeostasis in the absence of TmpL is the underpinning cause of the developmental and virulence defects observed in these studies.

          Author Summary

          The critical roles of reactive oxygen species (ROS) in fungal development and virulence have been well established over the past half a century since the first experimental detection of hydrogen peroxide in fungal cells by Bach (1950). In the cell, ROS act as signaling molecules regulating physiological responses and developmental processes and are also involved in sophisticated virulence processes for many pathogenic fungi. Therefore, uncovering the biological roles of cellular ROS appears to be very important in understanding fungal development and virulence. Currently we have limited knowledge of how intracellular ROS are generated by fungal cells and which cellular ROS regulatory mechanisms are involved in establishing homeostasis. In this study we describe a novel protein, TmpL, involved in development and virulence in both plant and animal pathogenic fungi. In the absence of TmpL, dysregulation of oxidative stress homeostasis in both fungi caused developmental and virulence defects. Therefore, elucidating the role of TmpL presents an opportunity to uncover a common pathogenicity mechanism employed by both plant and animal pathogens and to develop efficient and novel therapeutics for both plant and animal fungal disease. Our findings provide new insights into mechanisms underlying the complex web of interactions between ROS and cell differentiation and the involvement of ROS for both plant and animal fungal pathogenesis.

          Related collections

          Most cited references 100

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method.

           K Livak,  T Schmittgen (2001)
          The two most commonly used methods to analyze data from real-time, quantitative PCR experiments are absolute quantification and relative quantification. Absolute quantification determines the input copy number, usually by relating the PCR signal to a standard curve. Relative quantification relates the PCR signal of the target transcript in a treatment group to that of another sample such as an untreated control. The 2(-Delta Delta C(T)) method is a convenient way to analyze the relative changes in gene expression from real-time quantitative PCR experiments. The purpose of this report is to present the derivation, assumptions, and applications of the 2(-Delta Delta C(T)) method. In addition, we present the derivation and applications of two variations of the 2(-Delta Delta C(T)) method that may be useful in the analysis of real-time, quantitative PCR data. Copyright 2001 Elsevier Science (USA).
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Improved prediction of signal peptides: SignalP 3.0.

            We describe improvements of the currently most popular method for prediction of classically secreted proteins, SignalP. SignalP consists of two different predictors based on neural network and hidden Markov model algorithms, where both components have been updated. Motivated by the idea that the cleavage site position and the amino acid composition of the signal peptide are correlated, new features have been included as input to the neural network. This addition, combined with a thorough error-correction of a new data set, have improved the performance of the predictor significantly over SignalP version 2. In version 3, correctness of the cleavage site predictions has increased notably for all three organism groups, eukaryotes, Gram-negative and Gram-positive bacteria. The accuracy of cleavage site prediction has increased in the range 6-17% over the previous version, whereas the signal peptide discrimination improvement is mainly due to the elimination of false-positive predictions, as well as the introduction of a new discrimination score for the neural network. The new method has been benchmarked against other available methods. Predictions can be made at the publicly available web server
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reactive oxygen species: metabolism, oxidative stress, and signal transduction.

              Several reactive oxygen species (ROS) are continuously produced in plants as byproducts of aerobic metabolism. Depending on the nature of the ROS species, some are highly toxic and rapidly detoxified by various cellular enzymatic and nonenzymatic mechanisms. Whereas plants are surfeited with mechanisms to combat increased ROS levels during abiotic stress conditions, in other circumstances plants appear to purposefully generate ROS as signaling molecules to control various processes including pathogen defense, programmed cell death, and stomatal behavior. This review describes the mechanisms of ROS generation and removal in plants during development and under biotic and abiotic stress conditions. New insights into the complexity and roles that ROS play in plants have come from genetic analyses of ROS detoxifying and signaling mutants. Considering recent ROS-induced genome-wide expression analyses, the possible functions and mechanisms for ROS sensing and signaling in plants are compared with those in animals and yeast.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                November 2009
                November 2009
                6 November 2009
                : 5
                : 11
                Affiliations
                [1 ]Virginia Bioinformatics Institute and Department of Biological Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
                [2 ]Department of Veterinary Molecular Biology, Montana State University, Bozeman, Montana, United States of America
                [3 ]Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, Hawaii, United States of America
                University of Melbourne, Australia
                Author notes

                Conceived and designed the experiments: KHK SDW SWP BM RAC CBL. Performed the experiments: KHK SDW SP NG YC. Analyzed the data: KHK SDW SWP YC BM RAC CBL. Contributed reagents/materials/analysis tools: KHK SDW SWP BM RAC CBL. Wrote the paper: KHK SDW YC RAC CBL.

                Article
                09-PLPA-RA-1205R2
                10.1371/journal.ppat.1000653
                2766074
                19893627
                Kim et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                Page count
                Pages: 25
                Categories
                Research Article
                Biochemistry/Bioinformatics
                Cell Biology/Cellular Death and Stress Responses
                Cell Biology/Gene Expression
                Cell Biology/Microbial Growth and Development
                Cell Biology/Microbial Physiology and Metabolism
                Genetics and Genomics/Functional Genomics
                Genetics and Genomics/Microbial Evolution and Genomics
                Plant Biology/Plant-Biotic Interactions
                Respiratory Medicine/Respiratory Infections

                Infectious disease & Microbiology

                Comments

                Comment on this article