63
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Bioactive Coatings for Orthopaedic Implants—Recent Trends in Development of Implant Coatings

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Joint replacement is a major orthopaedic procedure used to treat joint osteoarthritis. Aseptic loosening and infection are the two most significant causes of prosthetic implant failure. The ideal implant should be able to promote osteointegration, deter bacterial adhesion and minimize prosthetic infection. Recent developments in material science and cell biology have seen the development of new orthopaedic implant coatings to address these issues. Coatings consisting of bioceramics, extracellular matrix proteins, biological peptides or growth factors impart bioactivity and biocompatibility to the metallic surface of conventional orthopaedic prosthesis that promote bone ingrowth and differentiation of stem cells into osteoblasts leading to enhanced osteointegration of the implant. Furthermore, coatings such as silver, nitric oxide, antibiotics, antiseptics and antimicrobial peptides with anti-microbial properties have also been developed, which show promise in reducing bacterial adhesion and prosthetic infections. This review summarizes some of the recent developments in coatings for orthopaedic implants.

          Related collections

          Most cited references289

          • Record: found
          • Abstract: found
          • Article: not found

          RGD and other recognition sequences for integrins.

          Proteins that contain the Arg-Gly-Asp (RGD) attachment site, together with the integrins that serve as receptors for them, constitute a major recognition system for cell adhesion. The RGD sequence is the cell attachment site of a large number of adhesive extracellular matrix, blood, and cell surface proteins, and nearly half of the over 20 known integrins recognize this sequence in their adhesion protein ligands. Some other integrins bind to related sequences in their ligands. The integrin-binding activity of adhesion proteins can be reproduced by short synthetic peptides containing the RGD sequence. Such peptides promote cell adhesion when insolubilized onto a surface, and inhibit it when presented to cells in solution. Reagents that bind selectively to only one or a few of the RGD-directed integrins can be designed by cyclizing peptides with selected sequences around the RGD and by synthesizing RGD mimics. As the integrin-mediated cell attachment influences and regulates cell migration, growth, differentiation, and apoptosis, the RGD peptides and mimics can be used to probe integrin functions in various biological systems. Drug design based on the RGD structure may provide new treatments for diseases such as thrombosis, osteoporosis, and cancer.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder.

            A key tenet of bone tissue engineering is the development of scaffold materials that can stimulate stem cell differentiation in the absence of chemical treatment to become osteoblasts without compromising material properties. At present, conventional implant materials fail owing to encapsulation by soft tissue, rather than direct bone bonding. Here, we demonstrate the use of nanoscale disorder to stimulate human mesenchymal stem cells (MSCs) to produce bone mineral in vitro, in the absence of osteogenic supplements. This approach has similar efficiency to that of cells cultured with osteogenic media. In addition, the current studies show that topographically treated MSCs have a distinct differentiation profile compared with those treated with osteogenic media, which has implications for cell therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Surface treatments of titanium dental implants for rapid osseointegration.

              The osseointegration rate of titanium dental implants is related to their composition and surface roughness. Rough-surfaced implants favor both bone anchoring and biomechanical stability. Osteoconductive calcium phosphate coatings promote bone healing and apposition, leading to the rapid biological fixation of implants. The different methods used for increasing surface roughness or applying osteoconductive coatings to titanium dental implants are reviewed. Surface treatments, such as titanium plasma-spraying, grit-blasting, acid-etching, anodization or calcium phosphate coatings, and their corresponding surface morphologies and properties are described. Most of these surfaces are commercially available and have proven clinical efficacy (>95% over 5 years). The precise role of surface chemistry and topography on the early events in dental implant osseointegration remain poorly understood. In addition, comparative clinical studies with different implant surfaces are rarely performed. The future of dental implantology should aim to develop surfaces with controlled and standardized topography or chemistry. This approach will be the only way to understand the interactions between proteins, cells and tissues, and implant surfaces. The local release of bone stimulating or resorptive drugs in the peri-implant region may also respond to difficult clinical situations with poor bone quality and quantity. These therapeutic strategies should ultimately enhance the osseointegration process of dental implants for their immediate loading and long-term success.
                Bookmark

                Author and article information

                Journal
                Int J Mol Sci
                Int J Mol Sci
                ijms
                International Journal of Molecular Sciences
                MDPI
                1422-0067
                04 July 2014
                July 2014
                : 15
                : 7
                : 11878-11921
                Affiliations
                [1 ]Departments of Surgery, University of Melbourne, St Vincent’s Hospital (Melbourne), Fitzroy, VIC 3065, Australia; E-Mails: billzhang11@ 123456gmail.com (B.G.X.Z.); damianem@ 123456unimelb.edu.au (D.E.M.)
                [2 ]Department of Orthopaedics, St Vincent’s Hospital (Melbourne), Fitzroy, VIC 3065, Australia
                [3 ]Australian Research Council Centre of Excellence for Electromaterials Science (ACES), University of Wollongong, Intelligent Polymer Research Institute, Wollongong, NSW 2500, Australia; E-Mail: gwallace@ 123456uow.edu.au
                [4 ]School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Bundoora, VIC 3083, Australia; E-Mail: milan.brandt@ 123456rmit.edu.au
                Author notes
                [* ]Author to whom correspondence should be addressed; E-Mail: sarcoma@ 123456bigpond.net.au ; Tel.: +61-3-9288-2365; Fax: +61-3-9288-2571.
                Article
                ijms-15-11878
                10.3390/ijms150711878
                4139820
                25000263
                f2462dcd-9eea-40a8-a0d7-ecb90f135d95
                © 2014 by the authors; licensee MDPI, Basel, Switzerland.

                This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license ( http://creativecommons.org/licenses/by/3.0/).

                History
                : 25 April 2014
                : 11 June 2014
                : 16 June 2014
                Categories
                Review

                Molecular biology
                osteointegration,orthopaedic,implant,coating,osteoinduction,osteoconduction,infection,antimicrobial,silver,biofilm

                Comments

                Comment on this article