9
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Structural basis of the chiral selectivity of Pseudomonas cepacia lipase.

      1 , , , ,
      European journal of biochemistry
      Wiley

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          To investigate the enantioselectivity of Pseudomonas cepacia lipase, inhibition studies were performed with Sc- and Rc-(Rp,Sp)-1,2-dialkylcarbamoylglycero-3-O-p-nitrophenyl alkylphosphonates of different alkyl chain lengths. P. cepacia lipase was most rapidly inactivated by Rc-(Rp,Sp)-1,2-dioctylcarbamoylglycero-3-O-p-nitrophenyl octylphosphonate (Rc-trioctyl) with an inactivation half-time of 75 min, while that for the Sc-(Rp,Sp)-1,2-dioctylcarbamoylglycero-3-O-p-nitrophenyl octyl-phosphonate (Sc-trioctyl) compound was 530 min. X-ray structures were obtained of P. cepacia lipase after reaction with Rc-trioctyl to 0.29-nm resolution at pH 4 and covalently modified with Rc-(Rp,Sp)-1,2-dibutylcarbamoylglycero-3-O-p-nitrophenyl butyl-phosphonate (Rc-tributyl) to 0.175-nm resolution at pH 8.5. The three-dimensional structures reveal that both triacylglycerol analogues had reacted with the active-site Ser87, forming a covalent complex. The bound phosphorus atom shows the same chirality (Sp) in both complexes despite the use of a racemic (Rp,Sp) mixture at the phosphorus atom of the triacylglycerol analogues. In the structure of Rc-tributyl-complexed P. cepacia lipase, the diacylglycerol moiety has been lost due to an aging reaction, and only the butyl phosphonate remains visible in the electron density. In the Rc-trioctyl complex the complete inhibitor is clearly defined; it adopts a bent tuning fork conformation. Unambiguously, four binding pockets for the triacylglycerol could be detected: an oxyanion hole and three pockets which accommodate the sn-1, sn-2, and sn-3 fatty acid chains. Van der Waals' interactions are the main forces that keep the radyl groups of the triacylglycerol analogue in position and, in addition, a hydrogen bond to the carbonyl oxygen of the sn-2 chain contributes to fixing the position of the inhibitor.

          Related collections

          Author and article information

          Journal
          Eur J Biochem
          European journal of biochemistry
          Wiley
          0014-2956
          0014-2956
          Jun 01 1998
          : 254
          : 2
          Affiliations
          [1 ] BIOSON Research Institute and Laboratory of Biophysical Chemistry, University of Groningen, The Netherlands.
          Article
          10.1046/j.1432-1327.1998.2540333.x
          9660188
          f24b3304-4873-4fb4-8416-58cab0e281cb
          History

          Comments

          Comment on this article