24
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Evaluation of Antioxidant and Anti-Inflammatory Effects of Eucommia ulmoides Flavones Using Diquat-Challenged Piglet Models

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study was designed to evaluate the antioxidant and anti-inflammatory effects of Eucommia ulmoides flavones (EUF) using diquat-challenged piglet models. A total of 96 weaned piglets were randomly allotted to 1 of 3 treatments with 8 replication pens per treatment and 4 piglets per pen. The treatments were basal diet, basal diet + diquat, and 100 mg/kg EUF diet + diquat. On day 7 after the initiation of treatment, the piglets were injected intraperitoneally with diquat at 8 mg/kg BW or the same amount of sterilized saline. The experiment was conducted for 21 days. EUF supplementation improved the growth performance of diquat-treated piglets from day 14 to 21. Diquat also induced oxidative stress and inflammatory responses and then impaired intestinal morphology. But EUF addition alleviated these negative effects induced by diquat that showed decreasing serum concentrations of proinflammatory cytokines but increasing antioxidant indexes and anti-inflammatory cytokines on day 14. Supplementation of EUF also increased villi height and villous height, crypt depth, but decreased the histopathological score and MPO activity compared with those of diquat-challenged pigs fed with the basal diet on day 14. Results indicated that EUF attenuated the inflammation and oxidative stress of piglets caused by diquat injection.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: not found

          The free radical theory of aging matures.

          The free radical theory of aging, conceived in 1956, has turned 40 and is rapidly attracting the interest of the mainstream of biological research. From its origins in radiation biology, through a decade or so of dormancy and two decades of steady phenomenological research, it has attracted an increasing number of scientists from an expanding circle of fields. During the past decade, several lines of evidence have convinced a number of scientists that oxidants play an important role in aging. (For the sake of simplicity, we use the term oxidant to refer to all "reactive oxygen species," including O2-., H2O2, and .OH, even though the former often acts as a reductant and produces oxidants indirectly.) The pace and scope of research in the last few years have been particularly impressive and diverse. The only disadvantage of the current intellectual ferment is the difficulty in digesting the literature. Therefore, we have systematically reviewed the status of the free radical theory, by categorizing the literature in terms of the various types of experiments that have been performed. These include phenomenological measurements of age-associated oxidative stress, interspecies comparisons, dietary restriction, the manipulation of metabolic activity and oxygen tension, treatment with dietary and pharmacological antioxidants, in vitro senescence, classical and population genetics, molecular genetics, transgenic organisms, the study of human diseases of aging, epidemiological studies, and the ongoing elucidation of the role of active oxygen in biology.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Oxidative Stress, Prooxidants, and Antioxidants: The Interplay

            Oxidative stress is a normal phenomenon in the body. Under normal conditions, the physiologically important intracellular levels of reactive oxygen species (ROS) are maintained at low levels by various enzyme systems participating in the in vivo redox homeostasis. Therefore, oxidative stress can also be viewed as an imbalance between the prooxidants and antioxidants in the body. For the last two decades, oxidative stress has been one of the most burning topics among the biological researchers all over the world. Several reasons can be assigned to justify its importance: knowledge about reactive oxygen and nitrogen species production and metabolism; identification of biomarkers for oxidative damage; evidence relating manifestation of chronic and some acute health problems to oxidative stress; identification of various dietary antioxidants present in plant foods as bioactive molecules; and so on. This review discusses the importance of oxidative stress in the body growth and development as well as proteomic and genomic evidences of its relationship with disease development, incidence of malignancies and autoimmune disorders, increased susceptibility to bacterial, viral, and parasitic diseases, and an interplay with prooxidants and antioxidants for maintaining a sound health, which would be helpful in enhancing the knowledge of any biochemist, pathophysiologist, or medical personnel regarding this important issue.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Lipid peroxidation and antioxidants as biomarkers of tissue damage.

              Disturbance of the balance between the production of reactive oxygen species such as superoxide; hydrogen peroxide; hypochlorous acid; hydroxyl, alkoxyl, and peroxyl radicals; and antioxidant defenses against them produces oxidative stress, which amplifies tissue damage by releasing prooxidative forms of reactive iron that are able to drive Fenton chemistry and lipid peroxidation and by eroding away protective sacrificial antioxidants. The body has a hierarchy of defense strategies to deal with oxidative stress within different cellular compartments, and superimposed on these are gene-regulated defenses involving the heat-shock and oxidant stress proteins.
                Bookmark

                Author and article information

                Journal
                Oxid Med Cell Longev
                Oxid Med Cell Longev
                OMCL
                Oxidative Medicine and Cellular Longevity
                Hindawi
                1942-0900
                1942-0994
                2017
                15 August 2017
                : 2017
                : 8140962
                Affiliations
                1Department of Medicine, Jishou University, Jishou, Hunan 416000, China
                2National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China
                3University of Chinese Academy of Sciences, Beijing 100008, China
                4Department of Animal Science, University of California Davis, Davis, CA 95616, USA
                Author notes

                Academic Editor: Ehab M. Tousson

                Author information
                http://orcid.org/0000-0001-5729-7683
                http://orcid.org/0000-0003-0138-1530
                http://orcid.org/0000-0001-6112-6975
                Article
                10.1155/2017/8140962
                5574320
                28894511
                f253a697-435f-4301-ba35-ce88aba525a7
                Copyright © 2017 Daixiu Yuan et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 10 May 2017
                : 18 July 2017
                Funding
                Funded by: Key Laboratory of Plant Resource Conservation and Utilization College of Hunan Province
                Award ID: JSK2016ZZD004
                Funded by: Chinese Academy of Sciences
                Award ID: QYZDY-SSW- SMC008
                Funded by: National Natural Science Foundation of China
                Award ID: 31672433
                Award ID: 31372326
                Award ID: 31330075
                Award ID: 31560640
                Categories
                Research Article

                Molecular medicine
                Molecular medicine

                Comments

                Comment on this article