8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Taxonomic resolution affects host−parasite association model performance

      ,
      Parasitology
      Cambridge University Press (CUP)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Identifying the factors that structure host–parasite interactions is fundamental to understand the drivers of species distributions and to predict novel cross-species transmission events. More phylogenetically related host species tend to have more similar parasite associations, but parasite specificity may vary as a function of transmission mode, parasite taxonomy or life history. Accordingly, analyses that attempt to infer host−parasite associations using combined data on different parasite groups may perform quite differently relative to analyses on each parasite subset. In essence, are more data always better when predicting host−parasite associations, or does parasite taxonomic resolution matter? Here, we explore how taxonomic resolution affects predictive models of host−parasite associations using the London Natural History Museum's database of host–helminth interactions. Using boosted regression trees, we demonstrate that taxon-specific models (i.e. of Acanthocephalans, Nematodes and Platyhelminthes) consistently outperform full models in predicting mammal-helminth associations. At finer spatial resolutions, full and taxon-specific model performance does not vary, suggesting tradeoffs between phylogenetic and spatial scales of analysis. Although all models identify similar host and parasite covariates as important to such patterns, our results emphasize the importance of phylogenetic scale in the study of host–parasite interactions and suggest that using taxonomic subsets of data may improve predictions of parasite distributions and cross-species transmission. Predictive models of host–pathogen interactions should thus attempt to encompass the spatial resolution and phylogenetic scale desired for inference and prediction and potentially use model averaging or ensemble models to combine predictions from separately trained models.

          Related collections

          Most cited references50

          • Record: found
          • Abstract: found
          • Article: not found

          A working guide to boosted regression trees.

          1. Ecologists use statistical models for both explanation and prediction, and need techniques that are flexible enough to express typical features of their data, such as nonlinearities and interactions. 2. This study provides a working guide to boosted regression trees (BRT), an ensemble method for fitting statistical models that differs fundamentally from conventional techniques that aim to fit a single parsimonious model. Boosted regression trees combine the strengths of two algorithms: regression trees (models that relate a response to their predictors by recursive binary splits) and boosting (an adaptive method for combining many simple models to give improved predictive performance). The final BRT model can be understood as an additive regression model in which individual terms are simple trees, fitted in a forward, stagewise fashion. 3. Boosted regression trees incorporate important advantages of tree-based methods, handling different types of predictor variables and accommodating missing data. They have no need for prior data transformation or elimination of outliers, can fit complex nonlinear relationships, and automatically handle interaction effects between predictors. Fitting multiple trees in BRT overcomes the biggest drawback of single tree models: their relatively poor predictive performance. Although BRT models are complex, they can be summarized in ways that give powerful ecological insight, and their predictive performance is superior to most traditional modelling methods. 4. The unique features of BRT raise a number of practical issues in model fitting. We demonstrate the practicalities and advantages of using BRT through a distributional analysis of the short-finned eel (Anguilla australis Richardson), a native freshwater fish of New Zealand. We use a data set of over 13 000 sites to illustrate effects of several settings, and then fit and interpret a model using a subset of the data. We provide code and a tutorial to enable the wider use of BRT by ecologists.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS)

              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              PanTHERIA: a species-level database of life history, ecology, and geography of extant and recently extinct mammals

                Bookmark

                Author and article information

                Contributors
                (View ORCID Profile)
                (View ORCID Profile)
                Journal
                Parasitology
                Parasitology
                Cambridge University Press (CUP)
                0031-1820
                1469-8161
                December 21 2020
                : 1-7
                Article
                10.1017/S0031182020002371
                33342442
                f2558d49-8a22-410a-9e0b-a2c3d6790e9a
                © 2020

                https://www.cambridge.org/core/terms

                History

                Comments

                Comment on this article