15
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mycobacterium tuberculosis complex in wildlife: Review of current applications of antemortem and postmortem diagnosis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Tuberculosis (TB) is a chronic inflammatory and zoonotic disease caused by Mycobacterium tuberculosis complex (MTBC) members, which affects various domestic animals, wildlife, and humans. Some wild animals serve as reservoir hosts in the transmission and epidemiology of the disease. Therefore, the monitoring and surveillance of both wild and domestic hosts are critical for prevention and control strategies. For TB diagnosis, the single intradermal tuberculin test or the single comparative intradermal tuberculin test, and the gamma-interferon test, which is regarded as an ancillary test, are used. Postmortem examination can identify granulomatous lesions compatible with a diagnosis of TB. In contrast, smears of the lesions can be stained for acid-fast bacilli, and samples of the affected organs can be subjected to histopathological analyses. Culture is the gold standard test for isolating mycobacterial bacilli because it has high sensitivity and specificity compared with other methods. Serology for antibody detection allows the testing of many samples simply, rapidly, and inexpensively, and the protocol can be standardized in different laboratories. Molecular biological analyses are also applicable to trace the epidemiology of the disease. In conclusion, reviewing the various techniques used in MTBC diagnosis can help establish guidelines for researchers when choosing a particular diagnostic method depending on the situation at hand, be it disease outbreaks in wildlife or for epidemiological studies. This is because a good understanding of various diagnostic techniques will aid in monitoring and managing emerging pandemic threats of infectious diseases from wildlife and also preventing the potential spread of zoonotic TB to livestock and humans. This review aimed to provide up-to-date information on different techniques used for diagnosing TB at the interfaces between wildlife, livestock, and humans.

          Related collections

          Most cited references225

          • Record: found
          • Abstract: found
          • Article: not found

          Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology.

          Widespread use of DNA restriction fragment length polymorphism (RFLP) to differentiate strains of Mycobacterium tuberculosis to monitor the transmission of tuberculosis has been hampered by the need to culture this slow-growing organism and by the level of technical sophistication needed for RFLP typing. We have developed a simple method which allows simultaneous detection and typing of M. tuberculosis in clinical specimens and reduces the time between suspicion of the disease and typing from 1 or several months to 1 or 3 days. The method is based on polymorphism of the chromosomal DR locus, which contains a variable number of short direct repeats interspersed with nonrepetitive spacers. The method is referred to as spacer oligotyping or "spoligotyping" because it is based on strain-dependent hybridization patterns of in vitro-amplified DNA with multiple spacer oligonucleotides. Most of the clinical isolates tested showed unique hybridization patterns, whereas outbreak strains shared the same spoligotype. The types obtained from direct examination of clinical samples were identical to those obtained by using DNA from cultured M. tuberculosis. This novel preliminary study shows that the novel method may be a useful tool for rapid disclosure of linked outbreak cases in a community, in hospitals, or in other institutions and for monitoring of transmission of multidrug-resistant M. tuberculosis. Unexpectedly, spoligotyping was found to differentiate M. bovis from M. tuberculosis, a distinction which is often difficult to make by traditional methods.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            SITVITWEB--a publicly available international multimarker database for studying Mycobacterium tuberculosis genetic diversity and molecular epidemiology.

            Among various genotyping methods to study Mycobacterium tuberculosis complex (MTC) genotypic polymorphism, spoligotyping and mycobacterial interspersed repetitive units-variable number of DNA tandem repeats (MIRU-VNTRs) have recently gained international approval as robust, fast, and reproducible typing methods generating data in a portable format. Spoligotyping constituted the backbone of a publicly available database SpolDB4 released in 2006; nonetheless this method possesses a low discriminatory power when used alone and should be ideally used in conjunction with a second typing method such as MIRU-VNTRs for high-resolution epidemiological studies. We hereby describe a publicly available international database named SITVITWEB which incorporates such multimarker data allowing to have a global vision of MTC genetic diversity worldwide based on 62,582 clinical isolates corresponding to 153 countries of patient origin (105 countries of isolation). We report a total of 7105 spoligotype patterns (corresponding to 58,180 clinical isolates) - grouped into 2740 shared-types or spoligotype international types (SIT) containing 53,816 clinical isolates and 4364 orphan patterns. Interestingly, only 7% of the MTC isolates worldwide were orphans whereas more than half of SITed isolates (n=27,059) were restricted to only 24 most prevalent SITs. The database also contains a total of 2379 MIRU patterns (from 8161 clinical isolates) from 87 countries of patient origin (35 countries of isolation); these were grouped in 847 shared-types or MIRU international types (MIT) containing 6626 isolates and 1533 orphan patterns. Lastly, data on 5-locus exact tandem repeats (ETRs) were available on 4626 isolates from 59 countries of patient origin (22 countries of isolation); a total of 458 different VNTR patterns were observed - split into 245 shared-types or VNTR International Types (VIT) containing 4413 isolates) and 213 orphan patterns. Datamining of SITVITWEB further allowed to update rules defining MTC genotypic lineages as well to have a new insight into MTC population structure and worldwide distribution at country, sub-regional and continental levels. At evolutionary level, the data compiled may be useful to distinguish the occasional convergent evolution of genotypes versus specific evolution of sublineages essentially influenced by adaptation to the host. This database is publicly available at: http://www.pasteur-guadeloupe.fr:8081/SITVIT_ONLINE. Copyright © 2012 Elsevier B.V. All rights reserved.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Detection of specific sequences among DNA fragments separated by gel electrophoresis

                Bookmark

                Author and article information

                Journal
                Vet World
                Vet World
                Veterinary World
                Veterinary World (India )
                0972-8988
                2231-0916
                September 2020
                09 September 2020
                : 13
                : 9
                : 1822-1836
                Affiliations
                [1 ]Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
                [2 ]Department of Veterinary Medicine, Faculty of Veterinary Medicine, University of Maiduguri, 1069 PMB, Maiduguri, Borno State, Nigeria
                [3 ]Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
                [4 ]Department of Farm and Exotic Animal Medicine and Surgery, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
                [5 ]Department of Paraclinical, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, 16100 Kota Bharu, Kelantan, Malaysia
                Author notes
                Article
                Vetworld-13-1822
                10.14202/vetworld.2020.1822-1836
                7566238
                33132593
                f25e8290-1adf-41fe-b3ae-48e927b44cd7
                Copyright: © Lekko, et al.

                Open Access. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License ( http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver ( http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

                History
                : 29 February 2020
                : 16 July 2020
                Categories
                Review Article

                culture,elisa,gamma interferon test,genotyping,histopathology,mycobacterium tuberculosis complex,polymerase chain reaction,wildlife

                Comments

                Comment on this article