+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments.


          Covering: 2000 to 2018

          The antimicrobial activity of many of their natural products has brought prominence to the Streptomycetaceae, a family of Gram-positive bacteria that inhabit both soil and aquatic sediments. In the natural environment, antimicrobial compounds are likely to limit the growth of competitors, thereby offering a selective advantage to the producer, in particular when nutrients become limited and the developmental programme leading to spores commences. The study of the control of this secondary metabolism continues to offer insights into its integration with a complex lifecycle that takes multiple cues from the environment and primary metabolism. Such information can then be harnessed to devise laboratory screening conditions to discover compounds with new or improved clinical value. Here we provide an update of the review we published in NPR in 2011. Besides providing the essential background, we focus on recent developments in our understanding of the underlying regulatory networks, ecological triggers of natural product biosynthesis, contributions from comparative genomics and approaches to awaken the biosynthesis of otherwise silent or cryptic natural products. In addition, we highlight recent discoveries on the control of antibiotic production in other Actinobacteria, which have gained considerable attention since the start of the genomics revolution. New technologies that have the potential to produce a step change in our understanding of the regulation of secondary metabolism are also described.

          Related collections

          Most cited references337

          • Record: found
          • Abstract: found
          • Article: not found

          Two-component signal transduction.

          Most prokaryotic signal-transduction systems and a few eukaryotic pathways use phosphotransfer schemes involving two conserved components, a histidine protein kinase and a response regulator protein. The histidine protein kinase, which is regulated by environmental stimuli, autophosphorylates at a histidine residue, creating a high-energy phosphoryl group that is subsequently transferred to an aspartate residue in the response regulator protein. Phosphorylation induces a conformational change in the regulatory domain that results in activation of an associated domain that effects the response. The basic scheme is highly adaptable, and numerous variations have provided optimization within specific signaling systems. The domains of two-component proteins are modular and can be integrated into proteins and pathways in a variety of ways, but the core structures and activities are maintained. Thus detailed analyses of a relatively small number of representative proteins provide a foundation for understanding this large family of signaling proteins.
            • Record: found
            • Abstract: found
            • Article: not found

            Complete genome sequence of the model actinomycete Streptomyces coelicolor A3(2).

            Streptomyces coelicolor is a representative of the group of soil-dwelling, filamentous bacteria responsible for producing most natural antibiotics used in human and veterinary medicine. Here we report the 8,667,507 base pair linear chromosome of this organism, containing the largest number of genes so far discovered in a bacterium. The 7,825 predicted genes include more than 20 clusters coding for known or predicted secondary metabolites. The genome contains an unprecedented proportion of regulatory genes, predominantly those likely to be involved in responses to external stimuli and stresses, and many duplicated gene sets that may represent 'tissue-specific' isoforms operating in different phases of colonial development, a unique situation for a bacterium. An ancient synteny was revealed between the central 'core' of the chromosome and the whole chromosome of pathogens Mycobacterium tuberculosis and Corynebacterium diphtheriae. The genome sequence will greatly increase our understanding of microbial life in the soil as well as aiding the generation of new drug candidates by genetic engineering.
              • Record: found
              • Abstract: found
              • Article: not found

              Microbiological effects of sublethal levels of antibiotics.

              The widespread use of antibiotics results in the generation of antibiotic concentration gradients in humans, livestock and the environment. Thus, bacteria are frequently exposed to non-lethal (that is, subinhibitory) concentrations of drugs, and recent evidence suggests that this is likely to have an important role in the evolution of antibiotic resistance. In this Review, we discuss the ecology of antibiotics and the ability of subinhibitory concentrations to select for bacterial resistance. We also consider the effects of low-level drug exposure on bacterial physiology, including the generation of genetic and phenotypic variability, as well as the ability of antibiotics to function as signalling molecules. Together, these effects accelerate the emergence and spread of antibiotic-resistant bacteria among humans and animals.

                Author and article information

                Natural Product Reports
                Nat. Prod. Rep.
                Royal Society of Chemistry (RSC)
                : 35
                : 6
                : 575-604
                [1 ]Leiden University
                [2 ]Leiden Institute of Chemistry
                [3 ]2300 RA Leiden
                [4 ]Netherlands
                [5 ]Faculty of Biological Sciences
                [6 ]Astbury Centre for Structural Molecular Biology
                [7 ]University of Leeds
                [8 ]Leeds
                [9 ]UK
                © 2018


                Self URI (article page): http://xlink.rsc.org/?DOI=C8NP00012C


                Comment on this article