+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found

      Prolactin-Releasing Peptides Do Not Stimulate Prolactin Release in vivo

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          The prolactin (PRL)-releasing activity of the novel prolactin-releasing peptides (PrRPs) was studied in vivo using male and lactating female rats. Whereas thyrotropin-releasing hormone effectively stimulated PRL and thyrotropin release as expected, PrRP in both animal models neither stimulated PRL secretion nor affected the release of other pituitary hormones. At the anterior pituitary level, in situ hybridization (ISH) histochemistry and Northern blot analysis revealed significantly higher expression levels of PrRP receptor (UHR-1) transcripts in female compared to male rats but not between lactating and nonlactating animals. By ISH, expression of UHR-1 mRNA was also detected in the intermediate lobe but not in the posterior pituitary. UHR-1 transcripts were also readily detectable in various hypothalamic brain areas whereas expression of PrRP mRNA was restricted to the ventral part of the dorsomedial hypothalamic nucleus but was not detected in neuroendocrine hypothalamic nuclei (e.g. PVN, SON). We thus assume that in the central nervous system, PrRP may likely have functions as a neuromodulator. However, together with the detailed cytochemical studies of various investigators that failed to detect PrRP-immunopositive nerve endings in the median eminence, our results strongly suggest that the hypothalamic PrRPs cannot be classified as hypophysiotrophic factors.

          Related collections

          Most cited references 4

          • Record: found
          • Abstract: found
          • Article: not found

          A prolactin-releasing peptide in the brain.

          Hypothalamic peptide hormones regulate the secretion of most of the anterior pituitary hormones, that is, growth hormone, follicle-stimulating hormone, luteinizing hormone, thyroid-stimulating hormone and adrenocorticotropin. These peptides do not regulate the secretion of prolactin, at least in a specific manner, however. The peptides act through specific receptors, which are referred to as seven-transmembrane-domain receptors or G-protein-coupled receptors. Although prolactin is important in pregnancy and lactation in mammals, and is involved in the development of the mammary glands and the promotion of milk synthesis, a specific prolactin-releasing hormone has remained unknown. Here we identify a potent candidate for such a hormone. We first proposed that there may still be unknown peptide hormone factors that control pituitary function through seven-transmembrane-domain receptors. We isolated the complementary DNA encoding an 'orphan' receptor (that is, one for which the ligand is unknown). This receptor, hGR3, is specifically expressed in the human pituitary. We then searched for the hGR3 ligand in the hypothalamus and identified a new peptide, which shares no sequence similarity with known peptides and proteins, as an endogenous ligand. We show that this ligand is a potent prolactin-releasing factor for rat anterior pituitary cells; we have therefore named this peptide prolactin-releasing peptide.
            • Record: found
            • Abstract: found
            • Article: not found

            Distribution and characterization of immunoreactive prolactin-releasing peptide (PrRP) in rat tissue and plasma.

            We established a sensitive and specific two-site enzyme immunoassay (EIA) for prolactin-releasing peptide (PrRP) using two region-specific monoclonal antibodies. We investigated the tissue distribution and the plasma concentration of immunoreactive (ir-) PrRP in rats using this assay. Ir-PrRP was widely distributed in the central nervous system and pituitary gland. The highest concentration of ir-PrRP was found in the hypothalamus. In peripheral tissues, appreciable levels of ir-PrRP were found only in the adrenal gland. The mean plasma concentration of ir-PrRP was 0.13 +/- 0.01 fmol/ml (mean +/- SEM). In reverse-phase and gel-filtration high performance liquid chromatography, hypothalamic ir-PrRP eluted at a position identical to that of PrRP31 and PrRP20. On the other hand, ir-PrRP from the adrenal gland and plasma eluted only at the position of synthetic PrRP31, indicating that molecular forms of ir-PrRP in vivo differed among tissues. Copyright 1999 Academic Press.
              • Record: found
              • Abstract: found
              • Article: not found

              Sequence and tissue distribution of a candidate G-coupled receptor cloned from rat hypothalamus.

              We have used RT-PCR with degenerate transmembrane primers to clone members of the G-coupled protein receptor family from rat hypothalamic suprachiasmatic nuclei. We report here a novel clone, UHR-1, which encodes a candidate receptor that is most similar to the neuropeptide receptor family, including the tachykinins, somatostatins, and opioids. Message for this putative receptor is expressed in several brain regions, with the highest levels in pituitary, cerebellum, and hypothalamus. No message was detected in peripheral tissues. Southern blot analysis suggests that UHR-1 is likely a member of a multigene family. The natural ligand for this novel receptor is unknown, but based on sequence homology and structural features is likely to be a peptide.

                Author and article information

                S. Karger AG
                April 2000
                17 April 2000
                : 71
                : 4
                : 262-267
                aAbteilung für Klinische und experimentelle Endokrinologie, Universität Göttingen und bMax-Planck-Institut für experimentelle Endokrinologie, Hannover, Deutschland
                54544 Neuroendocrinology 2000;71:262–267
                © 2000 S. Karger AG, Basel

                Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

                Page count
                Figures: 4, References: 24, Pages: 6
                Reproductive Neuroendocrinology


                Comment on this article