+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: not found

      Nonhydrolyzable diubiquitin analogues are inhibitors of ubiquitin conjugation and deconjugation.


      Carbon-Nitrogen Lyases, antagonists & inhibitors, Dimerization, Endopeptidases, drug effects, Hydrolases, Ligases, Protease Inhibitors, pharmacology, Thiolester Hydrolases, Ubiquitin Thiolesterase, Ubiquitins, analogs & derivatives, chemistry, metabolism

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          A series of nonhydrolyzable ubiquitin dimer analogues has been synthesized and evaluated as inhibitors of ubiquitin-dependent processes. Dimer analogues were synthesized by cross-linking ubiquitin containing a terminal cysteine (G76C) to ubiquitin containing cysteine at position 11 ((76-11)Ub(2)), 29 ((76-29)Ub(2)), 48 ((76-48)Ub(2)), or 63 ((76-63)Ub(2)). A head-to-head dimer of cysteine G76C ((76-76)Ub(2)) served as a control. These analogues are mimics of the different chain linkages observed in natural polyubiquitin chains. All analogues showed weak inhibition toward the catalytic domain of UCH-L3 and a UBP pseudogene. In the absence of ubiquitin, isopeptidase T was inhibited only by the dimer linked through residue 29. In the presence of 0.5 microM ubiquitin, isopeptidase T was inhibited by several of the dimer analogues, with the (76-29)Ub(2) dimer exhibiting a K(i) of 1.8 nM. However, USP14, the human homologue of yeast Ubp6, was not inhibited at the concentrations tested. Some analogues of ubiquitin dimer also acted as selective inhibitors of conjugation and deconjugation of ubiquitin catalyzed by reticulocyte fraction II. (76-76)Ub(2) and (76-11)Ub(2) did not inhibit the conjugation of ubiquitin, while (76-29)Ub(2), (76-48)Ub(2), and (76-63)Ub(2) were potent inhibitors of conjugation. This specificity is consistent with the known ability of cells to form K29-, K48-, and K63-linked polyubiquitin chains. While (76-11)Ub(2), (76-29)Ub(2), and (76-63)Ub(2) inhibited release of ubiquitin from a pool of total conjugates, (76-48)Ub(2) and (76-76)Ub(2) showed no significant inhibition. Isopeptidase T was shown to specifically disassemble two conjugates (assumed to be di- and triubiquitin with masses of 26 and 17 kDa) formed in the reticulocyte lysate system. This activity was inhibited differentially by all dimer analogues. The inhibitor selectivity for deconjugation of the 26 and 17 kDa conjugates was similar to that observed for isopeptidase T. The observations suggest that these two conjugated proteins of the reticulocyte lysate are specific substrates for isopeptidase T in lysates.

          Related collections

          Author and article information



          Comment on this article