54
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Diversity of the RFamide Peptide Family in Mollusks

      review-article
      1 , 2 , 3 , 4 , 5 , 1 , 2 , 3 , 4 , 5 , *
      Frontiers in Endocrinology
      Frontiers Media S.A.
      FaRPs, LFRFamide, luqin, NPF, CCK/SK, mollusks

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Since the initial characterization of the cardioexcitatory peptide FMRFamide in the bivalve mollusk Macrocallista nimbosa, a great number of FMRFamide-like peptides (FLPs) have been identified in mollusks. FLPs were initially isolated and molecularly characterized in model mollusks using biochemical methods. The development of recombinant technologies and, more recently, of genomics has boosted knowledge on their diversity in various mollusk classes. Today, mollusk FLPs represent approximately 75 distinct RFamide peptides that appear to result from the expression of only five genes: the FMRFamide-related peptide gene, the LFRFamide gene, the luqin gene, the neuropeptide F gene, and the cholecystokinin/sulfakinin gene. FLPs display a complex spatiotemporal pattern of expression in the central and peripheral nervous system. Working as neurotransmitters, neuromodulators, or neurohormones, FLPs are involved in the control of a great variety of biological and physiological processes including cardiovascular regulation, osmoregulation, reproduction, digestion, and feeding behavior. From an evolutionary viewpoint, the major challenge will then logically concern the elucidation of the FLP repertoire of orphan mollusk classes and the way they are functionally related. In this respect, deciphering FLP signaling pathways by characterizing the specific receptors these peptides bind remains another exciting objective.

          Related collections

          Most cited references137

          • Record: found
          • Abstract: found
          • Article: not found

          Global view of the evolution and diversity of metazoan neuropeptide signaling.

          Neuropeptides are signaling molecules that commonly act via G protein-coupled receptors (GPCRs) and are generated in neurons by proneuropeptide (pNP) cleavage. Present in both cnidarians and bilaterians, neuropeptides represent an ancient and widespread mode of neuronal communication. Due to the inherent difficulties of analyzing highly diverse and repetitive pNPs, the relationships among different families are often elusive. Using similarity-based clustering and sensitive similarity searches, I obtained a global view of metazoan pNP diversity and evolution. Clustering revealed a large and diffuse network of sequences connected by significant sequence similarity encompassing one-quarter of all families. pNPs belonging to this cluster were also identified in the early-branching neuronless animal Trichoplax adhaerens. Clustering of neuropeptide GPCRs identified several orthology groups and allowed the reconstruction of the phyletic distribution of receptor families. GPCR phyletic distribution closely paralleled that of pNPs, indicating extensive conservation and long-term coevolution of receptor-ligand pairs. Receptor orthology and intermediate sequences also revealed the homology of pNPs so far considered unrelated, including allatotropin and orexin. These findings, together with the identification of deuterostome achatin and luqin and protostome opioid pNPs, extended the neuropeptide complement of the urbilaterian. Several pNPs were also identified from the hemichordate Saccoglossus kowalevskii and the cephalochordate Branchiostoma floridae, elucidating pNP evolution in deuterostomes. Receptor-ligand conservation also allowed ligand predictions for many uncharacterized GPCRs from nonmodel species. The reconstruction of the neuropeptide-signaling repertoire at deep nodes of the animal phylogeny allowed the formulation of a testable scenario of the evolution of animal neuroendocrine systems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Molecular evolution of peptidergic signaling systems in bilaterians.

            Peptide hormones and their receptors are widespread in metazoans, but the knowledge we have of their evolutionary relationships remains unclear. Recently, accumulating genome sequences from many different species have offered the opportunity to reassess the relationships between protostomian and deuterostomian peptidergic systems (PSs). Here we used sequences of all human rhodopsin and secretin-type G protein-coupled receptors as bait to retrieve potential homologs in the genomes of 15 bilaterian species, including nonchordate deuterostomian and lophotrochozoan species. Our phylogenetic analysis of these receptors revealed 29 well-supported subtrees containing mixed sets of protostomian and deuterostomian sequences. This indicated that many vertebrate and arthropod PSs that were previously thought to be phyla specific are in fact of bilaterian origin. By screening sequence databases for potential peptides, we then reconstructed entire bilaterian peptide families and showed that protostomian and deuterostomian peptides that are ligands of orthologous receptors displayed some similarity at the level of their primary sequence, suggesting an ancient coevolution between peptide and receptor genes. In addition to shedding light on the function of human G protein-coupled receptor PSs, this work presents orthology markers to study ancestral neuron types that were probably present in the last common bilaterian ancestor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A comparative review of short and long neuropeptide F signaling in invertebrates: Any similarities to vertebrate neuropeptide Y signaling?

              Neuropeptides referred to as neuropeptide F (NPF) and short neuropeptide F (sNPF) have been identified in numerous invertebrate species. Sequence information has expanded tremendously due to recent genome sequencing and EST projects. Analysis of sequences of the peptides and prepropeptides strongly suggest that NPFs and sNPFs are not closely related. However, the NPFs are likely to be ancestrally related to the vertebrate family of neuropeptide Y (NPY) peptides. Peptide diversification may have been accomplished by different mechanisms in NPFs and sNPFs; in the former by gene duplications followed by diversification and in the sNPFs by internal duplications resulting in paracopies of peptides. We discuss the distribution and functions of NPFs and their receptors in several model invertebrates. Signaling with sNPF, however, has been investigated mainly in insects, especially in Drosophila. Both in invertebrates and in mammals NPF/NPY play roles in feeding, metabolism, reproduction and stress responses. Several other NPF functions have been studied in Drosophila that may be shared with mammals. In Drosophila sNPFs are widely distributed in numerous neurons of the CNS and some gut endocrines and their functions may be truly pleiotropic. Peptide distribution and experiments suggest roles of sNPF in feeding and growth, stress responses, modulation of locomotion and olfactory inputs, hormone release, as well as learning and memory. Available data indicate that NPF and sNPF signaling systems are distinct and not likely to play redundant roles. Copyright © 2011 Elsevier Inc. All rights reserved.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/111425
                URI : http://frontiersin.org/people/u/20900
                Journal
                Front Endocrinol (Lausanne)
                Front Endocrinol (Lausanne)
                Front. Endocrinol.
                Frontiers in Endocrinology
                Frontiers Media S.A.
                1664-2392
                24 October 2014
                2014
                : 5
                : 178
                Affiliations
                [1] 1Université de Caen Basse-Normandie, Normandie Université, Biology of Aquatic Organisms and Ecosystems (BOREA) , Caen, France
                [2] 2Muséum National d’Histoire Naturelle, Sorbonne Universités, BOREA , Paris, France
                [3] 3Université Pierre et Marie Curie, BOREA , Paris, France
                [4] 4UMR 7208 Centre National de la Recherche Scientifique, BOREA , Paris, France
                [5] 5IRD 207, L’Institut de recherche pour le développement, BOREA , Paris, France
                Author notes

                Edited by: Karine Rousseau, Muséum National d’Histoire Naturelle, France

                Reviewed by: Dick R. Nässel, Stockholm University, Sweden; Jan Adrianus Veenstra, Université de Bordeaux, France

                *Correspondence: Pascal Favrel, Université de Caen Basse-Normandie, Esplanade de la Paix, CS 14032, Caen Cedex 5 14032, France e-mail: pascal.favrel@ 123456unicaen.fr

                This article was submitted to Neuroendocrine Science, a section of the journal Frontiers in Endocrinology.

                Article
                10.3389/fendo.2014.00178
                4208409
                25386166
                f27a89b7-2ca4-4983-8f95-abd048976f01
                Copyright © 2014 Zatylny-Gaudin and Favrel.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 15 July 2014
                : 06 October 2014
                Page count
                Figures: 5, Tables: 7, Equations: 0, References: 149, Pages: 14, Words: 12112
                Categories
                Endocrinology
                Review Article

                Endocrinology & Diabetes
                farps,lfrfamide,luqin,npf,cck/sk,mollusks
                Endocrinology & Diabetes
                farps, lfrfamide, luqin, npf, cck/sk, mollusks

                Comments

                Comment on this article