10
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      A new notion of commutativity for the algorithmic Lov\'{a}sz Local Lemma

      Preprint
      , ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The Lov\'{a}sz Local Lemma (LLL) is a powerful tool in probabilistic combinatorics which can be used to establish the existence of objects that satisfy certain properties. The breakthrough paper of Moser and Tardos and follow-up works revealed that the LLL has intimate connections with a class of stochastic local search algorithms for finding such desirable objects. In particular, it can be seen as a sufficient condition for this type of algorithms to converge fast. Besides conditions for existence of and fast convergence to desirable objects, one may naturally ask further questions regarding properties of these algorithms. For instance, "are they parallelizable?", "how many solutions can they output?", "what is the expected "weight" of a solution?", etc. These questions and more have been answered for a class of LLL-inspired algorithms called commutative. In this paper we introduce a new, very natural and more general notion of commutativity (essentially matrix commutativity) which allows us to show a number of new refined properties of LLL-inspired local search algorithms with significantly simpler proofs.

          Related collections

          Author and article information

          Journal
          12 August 2020
          Article
          2008.05569
          f28fb92a-535b-4598-b2fb-00529295be8c

          http://arxiv.org/licenses/nonexclusive-distrib/1.0/

          History
          Custom metadata
          cs.DS math.PR

          Data structures & Algorithms,Probability
          Data structures & Algorithms, Probability

          Comments

          Comment on this article