100
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Aggregation of Calcium Phosphate and Oxalate Phases in the Formation of Renal Stones

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The majority of human kidney stones are comprised of multiple calcium oxalate monohydrate (COM) crystals encasing a calcium phosphate nucleus. The physiochemical mechanism of nephrolithiasis has not been well determined on the molecular level; this is crucial to the control and prevention of renal stone formation. This work investigates the role of phosphate ions on the formation of calcium oxalate stones; recent work has identified amorphous calcium phosphate (ACP) as a rapidly forming initial precursor to the formation of calcium phosphate minerals in vivo. The effect of phosphate on the nucleation of COM has been investigated using the constant composition (CC) method in combination with scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Our findings indicate COM nucleation is strongly promoted by the presence of phosphate; this occurs at relatively low phosphate concentrations, undersaturated with respect to brushite (dicalcium phosphate dehydrate, DCPD) formation. The results show that ACP plays a crucial role in the nucleation of calcium oxalate stones by promoting the aggregation of amorphous calcium oxalate (ACO) precursors at early induction times. The coaggregations of ACP and ACO precursors induce the multiple-point nucleation of COM. These novel findings expand our knowledge of urinary stone development, providing potential targets for treating the condition at the molecular level.

          Abstract

          In solutions that are supersaturated with respect to calcium oxalate, the presence of phosphate results in the initial formation of amorphous calcium phosphate clusters; these clusters were found to promote the aggregation of amorphous calcium oxalate complexes which induce the nucleation and growth of urinary stones.

          Related collections

          Most cited references24

          • Record: found
          • Abstract: found
          • Article: not found

          Ion-association complexes unite classical and non-classical theories for the biomimetic nucleation of calcium phosphate.

          Despite its importance in many industrial, geological and biological processes, the mechanism of crystallization from supersaturated solutions remains a matter of debate. Recent discoveries show that in many solution systems nanometre-sized structural units are already present before nucleation. Still little is known about the structure and role of these so-called pre-nucleation clusters. Here we present a combination of in situ investigations, which show that for the crystallization of calcium phosphate these nanometre-sized units are in fact calcium triphosphate complexes. Under conditions in which apatite forms from an amorphous calcium phosphate precursor, these complexes aggregate and take up an extra calcium ion to form amorphous calcium phosphate, which is a fractal of Ca(2)(HPO(4))(3)(2-) clusters. The calcium triphosphate complex also forms the basis of the crystal structure of octacalcium phosphate and apatite. Finally, we demonstrate how the existence of these complexes lowers the energy barrier to nucleation and unites classical and non-classical nucleation theories.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Randall's plaque: pathogenesis and role in calcium oxalate nephrolithiasis.

            The purpose of these studies was to test the hypothesis that Randall's plaque develops in unique anatomical sites of the kidney and their formation is conditioned by specific stone-forming pathophysiologies. We performed intraoperative papillary biopsies from kidneys of idiopathic-calcium oxalate (CaOx), intestinal bypass for obesity, brushite (BR) and cystine stone formers (SF) during percutaneous nephrolithotomy. Tissues were examined by infrared analysis and light and electron microscopy. Our analysis revealed a distinct pattern of mineral deposition and papillary pathology for each type of SF. CaOx SF had interstitial apatite crystals beginning at thin loops of Henle. These deposits termed Randall's plaque are thought to serve as sites for stone attachment. No tubular injury was noted. Intestinal bypass patients possessed intraluminal apatite deposits in inner medullary collecting ducts (IMCD) with associated cell injury. BR SF showed the most severe form of cortical and medullary changes with sites of Randall's plaque, and yellowish intraluminal deposits of apatite in IMCD. Cystine SF had plugging of ducts of Bellini with cystine crystals and apatite deposits in IMCD and loops of Henle. Intratubular sites of crystalline deposits were always associated to adjacent regions of interstitial fibrosis. The metabolic, anatomic, and surgical pathologic findings in four distinct groups of SF clearly show that 'the histology of the renal papilla from a stone former, is particular to the clinical setting'. We believe our approach to studying stone disease will provide insights into the pathogenesis of stone formation for each type of SF that will lead to improved clinical treatment.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Recent advances in the pathophysiology of nephrolithiasis.

              Over the past 10 years, major progress has been made in the pathogenesis of uric acid and calcium stones. These advances have led to our further understanding of a pathogenetic link between uric acid nephrolithiasis and the metabolic syndrome, the role of Oxalobacter formigenes in calcium oxalate stone formation, oxalate transport in Slc26a6-null mice, the potential pathogenetic role of Randall's plaque as a precursor for calcium oxalate nephrolithiasis, and the role of renal tubular crystal retention. With these advances, we may target the development of novel drugs including (1) insulin sensitizers; (2) probiotic therapy with O. formigenes, recombinant enzymes, or engineered bacteria; (3) treatments that involve the upregulation of intestinal luminal oxalate secretion by increasing anion transporter activity (Slc26a6), luminally active nonabsorbed agents, or oxalate binders; and (4) drugs that prevent the formation of Randall's plaque and/or renal tubular crystal adhesions.
                Bookmark

                Author and article information

                Journal
                Cryst Growth Des
                Cryst Growth Des
                cg
                cgdefu
                Crystal Growth & Design
                American Chemical Society
                1528-7483
                1528-7505
                12 November 2015
                12 November 2014
                07 January 2015
                : 15
                : 1
                : 204-211
                Affiliations
                [1]Department of Chemistry, University at Buffalo, The State University of New York , Buffalo, New York 14260, United States
                Author notes
                Article
                10.1021/cg501209h
                4291782
                25598742
                f29789ba-5b24-4ea8-a0aa-821986fabf1c
                Copyright © 2014 American Chemical Society

                This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes.

                History
                : 14 August 2014
                : 11 November 2014
                Funding
                National Institutes of Health, United States
                Categories
                Article
                Custom metadata
                cg501209h
                cg-2014-01209h

                Materials technology
                Materials technology

                Comments

                Comment on this article