+1 Recommend
0 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Maximizing kidneys for transplantation using machine perfusion: from the past to the future : A comprehensive systematic review and meta-analysis

      , MBBS, BSc (Med), MS a , b , c , , MBBS, MD, FRCS (Ed), FRACS b , c , d , , MBBS, MMed, FRACP, PhD a , e , f , , MHSc, MD, PhD, FACBMS a , b , c


      Wolters Kluwer Health

      cold storage, DBD, DCD, ECD, kidney preservation, machine perfusion, warm perfusion

      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Supplemental Digital Content is available in the text



          The two main options for renal allograft preservation are static cold storage (CS) and machine perfusion (MP). There has been considerably increased interest in MP preservation of kidneys, however conflicting evidence regarding its efficacy and associated costs have impacted its scale of clinical uptake. Additionally, there is no clear consensus regarding oxygenation, and hypo- or normothermia, in conjunction with MP, and its mechanisms of action are also debated. The primary aims of this article were to elucidate the benefits of MP preservation with and without oxygenation, and/or under normothermic conditions, when compared with CS prior to deceased donor kidney transplantation.


          Clinical (observational studies and prospective trials) and animal (experimental) articles exploring the use of renal MP were assessed (EMBASE, Medline, and Cochrane databases). Meta-analyses were conducted for the comparisons between hypothermic MP (hypothermic machine perfusion [HMP]) and CS (human studies) and normothermic MP (warm (normothermic) perfusion [WP]) compared with CS or HMP (animal studies). The primary outcome was allograft function. Secondary outcomes included graft and patient survival, acute rejection and parameters of tubular, glomerular and endothelial function. Subgroup analyses were conducted in expanded criteria (ECD) and donation after circulatory (DCD) death donors.


          A total of 101 studies (63 human and 38 animal) were included. There was a lower rate of delayed graft function in recipients with HMP donor grafts compared with CS kidneys (RR 0.77; 95% CI 0.69–0.87). Primary nonfunction (PNF) was reduced in ECD kidneys preserved by HMP (RR 0.28; 95% CI 0.09–0.89). Renal function in animal studies was significantly better in WP kidneys compared with both HMP (standardized mean difference [SMD] of peak creatinine 1.66; 95% CI 3.19 to 0.14) and CS (SMD of peak creatinine 1.72; 95% CI 3.09 to 0.34). MP improves renal preservation through the better maintenance of tubular, glomerular, and endothelial function and integrity.


          HMP improves short-term outcomes after renal transplantation, with a less clear effect in the longer-term. There is considerable room for modification of the process to assess whether superior outcomes can be achieved through oxygenation, perfusion fluid manipulation, and alteration of perfusion temperature. In particular, correlative experimental (animal) data provides strong support for more clinical trials investigating normothermic MP.

          Related collections

          Most cited references 121

          • Record: found
          • Abstract: found
          • Article: not found

          Machine perfusion or cold storage in deceased-donor kidney transplantation.

          Static cold storage is generally used to preserve kidney allografts from deceased donors. Hypothermic machine perfusion may improve outcomes after transplantation, but few sufficiently powered prospective studies have addressed this possibility. In this international randomized, controlled trial, we randomly assigned one kidney from 336 consecutive deceased donors to machine perfusion and the other to cold storage. All 672 recipients were followed for 1 year. The primary end point was delayed graft function (requiring dialysis in the first week after transplantation). Secondary end points were the duration of delayed graft function, delayed graft function defined by the rate of the decrease in the serum creatinine level, primary nonfunction, the serum creatinine level and clearance, acute rejection, toxicity of the calcineurin inhibitor, the length of hospital stay, and allograft and patient survival. Machine perfusion significantly reduced the risk of delayed graft function. Delayed graft function developed in 70 patients in the machine-perfusion group versus 89 in the cold-storage group (adjusted odds ratio, 0.57; P=0.01). Machine perfusion also significantly improved the rate of the decrease in the serum creatinine level and reduced the duration of delayed graft function. Machine perfusion was associated with lower serum creatinine levels during the first 2 weeks after transplantation and a reduced risk of graft failure (hazard ratio, 0.52; P=0.03). One-year allograft survival was superior in the machine-perfusion group (94% vs. 90%, P=0.04). No significant differences were observed for the other secondary end points. No serious adverse events were directly attributable to machine perfusion. Hypothermic machine perfusion was associated with a reduced risk of delayed graft function and improved graft survival in the first year after transplantation. (Current Controlled Trials number, ISRCTN83876362.) 2009 Massachusetts Medical Society
            • Record: found
            • Abstract: found
            • Article: not found

            Renal transplantation after ex vivo normothermic perfusion: the first clinical study.

            Ex vivo normothermic perfusion (EVNP) is a novel method of preservation that restores circulation and allows an organ to regain function prior to transplantation. The aim of this study was to assess the effects of EVNP in kidneys from marginal donors. Eighteen kidneys from extended criteria donors (ECD) underwent a period of EVNP immediately before transplantation. Kidneys were perfused with a plasma free red-cell based solution at a mean temperature of 34.6°C. The outcome of these kidneys was compared to a control group of 47 ECD kidneys that underwent static cold storage (CS). The mean donor age was 61 ± 1 years in the EVNP and 62 ± 6 years in the CS group (p = 0.520). EVNP kidneys were perfused for an average of 63 ± 16 min and all were transplanted successfully. The delayed graft function rate (DGF), defined as the requirement for dialysis within the first 7 days was 1/18 patients (5.6%) in the EVNP group versus 17/47 (36.2%) in the CS group (p = 0.014). There was no difference in graft or patient survival at 12 months (p = 0.510, 1.000). This first series of EVNP in renal transplantation demonstrates that this technique is both feasible and safe. Our preliminary data suggests that EVNP offers promise as a new technique of kidney preservation.
              • Record: found
              • Abstract: not found
              • Article: not found

              Expanded criteria donors for kidney transplantation.


                Author and article information

                Medicine (Baltimore)
                Medicine (Baltimore)
                Wolters Kluwer Health
                October 2016
                07 October 2016
                : 95
                : 40
                [a ]Centre for Transplant and Renal Research, Westmead Institute for Medical Research
                [b ]Department of Surgery, Westmead Hospital, Westmead
                [c ]Sydney Medical School, University of Sydney, Sydney
                [d ]Department of Surgery, Royal Prince Alfred Hospital, Camperdown
                [e ]Sydney School of Public Health, University of Sydney
                [f ]Centre for Kidney Research, The Children's Hospital at Westmead, Sydney, NSW, Australia.
                Author notes
                []Correspondence: Wayne J. Hawthorne, Department of Surgery, Westmead Hospital, Cnr Darcy Road and Hawkesbury Road, Westmead, NSW 2145, Australia (e-mail: Wayne.Hawthorne@ 123456sydney.edu.au ).
                Copyright © 2016 the Author(s). Published by Wolters Kluwer Health, Inc. All rights reserved.

                This is an open access article distributed under the Creative Commons Attribution-NoDerivatives License 4.0, which allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to the author. http://creativecommons.org/licenses/by-nd/4.0

                Research Article
                Systematic Review and Meta-Analysis
                Custom metadata


                Comment on this article