8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Assigning stereochemistry to single diastereoisomers by GIAO NMR calculation: the DP4 probability.

      Journal of the American Chemical Society
      American Chemical Society (ACS)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          GIAO NMR shift calculation has been applied to the challenging task of reliably assigning stereochemistry with quantifiable confidence when only one set of experimental data are available. We have compared several approaches for assigning a probability to each candidate structure and have tested the ability of these methods to distinguish up to 64 possible diastereoisomers of 117 different molecules, using NMR shifts obtained in rapid and computationally inexpensive single-point calculations on molecular mechanics geometries without time-consuming ab initio geometry optimization. We show that a probability analysis based on the errors in each (13)C or (1)H shift is significantly more successful at making correct assignments with high confidence than are probabilities based on the correlation coefficient and mean absolute error parameters. Our new probability measure, which we have termed DP4, complements the probabilities obtained from our previously developed CP3 parameter, which applies to the case of assigning a pair of diastereoisomers when one has both experimental data sets. We illustrate the application of DP4 to assigning the stereochemistry or structure of 21 natural products that were originally misassigned in the literature or that required extensive synthesis of diastereoisomers to establish their stereochemistry.

          Related collections

          Author and article information

          Journal
          20795713
          10.1021/ja105035r

          Comments

          Comment on this article

          scite_