1
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Analysis of cell cycle arrest in adipocyte differentiation.

      Oncogene
      3T3 Cells, Adipocytes, cytology, Animals, Antigens, Polyomavirus Transforming, immunology, Base Sequence, Cell Cycle, Cell Differentiation, DNA Primers, DNA Replication, Mice, Phosphorylation, Proto-Oncogene Proteins c-myc, metabolism, Retinoblastoma Protein, Thymidine Kinase, genetics

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Confluent 3T3-L1 preadipocytes differentiate to adipocytes in the presence of insulin, dexamethasone, and isobutylmethylxanthine (IDI). A transient increase of DNA synthesis is induced in 3T3-L1 cells 18 h after addition of IDI, followed by an arrest in the G1 phase of the cell cycle. Growth arrested cells express the proto-oncogene c-myc and the gene for the CCAAT/enhancer binding protein (C/EBPalpha) between day 2 and 5. While c-Myc is strongly implicated in cell proliferation, C/EBPalpha: is a differentiation-specific transcription factor with antiproliferative activity. Here we have characterized the cell cycle arrest in differentiating 3T3-L1 cells. Arrested cells express the Cdk inhibitors p21 and p27, but, at the same time, show hyperphosphorylation of Rb and expression of the E2F-regulated thymidine kinase gene. The addition of new serum to arrested cells resulted in cyclin A expression and Cdk2 activity, but not in DNA synthesis. Simian virus 40 large tumor antigen (LTAg) is a potent mitogen. The mutant LTAg-K1, deficient in binding of pocket proteins and unable to induce DNA synthesis in serum-starved 3T3-L1 cells, efficiently induced DNA synthesis in differentiating 3T3-L1 cells. This indicates that pocket proteins are probably not involved in the control of the cell cycle arrest during 3T3-L1 cell differentiation. Our data suggest that the differentiation-specific cell cycle block in 3T3-L1 cells is resistant to high levels of c-Myc, inactivation of pocket proteins, upregulation of cyclin A levels, and Cdk2 activation, but can be abolished by a function of LTAg that is independent of binding to pocket proteins.

          Related collections

          Author and article information

          Comments

          Comment on this article