70
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Interplay Between Monocytes/Macrophages and CD4 + T Cell Subsets in Rheumatoid Arthritis

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by inflammation of the synovial lining (synovitis). The inflammation in the RA joint is associated with and driven by immune cell infiltration, synovial hyperproliferation, and excessive production of proinflammatory mediators, such as tumor necrosis factor α (TNFα), interferon γ (IFNγ), interleukin (IL)-1β, IL-6, and IL-17, eventually resulting in damage to the cartilage and underlying bone. The RA joint harbors a wide range of immune cell types, including monocytes, macrophages, and CD4 + T cells (both proinflammatory and regulatory). The interplay between CD14 + myeloid cells and CD4 + T cells can significantly influence CD4 + T cell function, and conversely, effector vs. regulatory CD4 + T cell subsets can exert profound effects on monocyte/macrophage function. In this review, we will discuss how the interplay between CD4 + T cells and monocytes/macrophages may contribute to the immunopathology of RA.

          Related collections

          Most cited references180

          • Record: found
          • Abstract: found
          • Article: not found

          Epigenetic programming of monocyte-to-macrophage differentiation and trained innate immunity.

          Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro-differentiated naïve, tolerized, and trained macrophages. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and we identified pathways functionally implicated in trained immunity. β-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in deoxyribonuclease I hypersensitive sites at cell-type-specific epigenetic loci unveiled differentiation and treatment-specific repertoires. Altogether, we provide a resource to understand the epigenetic changes that underlie innate immunity in humans. Copyright © 2014, American Association for the Advancement of Science.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses.

            Polymorphisms in the gene encoding the transcription factor IRF5 that lead to higher mRNA expression are associated with many autoimmune diseases. Here we show that IRF5 expression in macrophages was reversibly induced by inflammatory stimuli and contributed to the plasticity of macrophage polarization. High expression of IRF5 was characteristic of M1 macrophages, in which it directly activated transcription of the genes encoding interleukin 12 subunit p40 (IL-12p40), IL-12p35 and IL-23p19 and repressed the gene encoding IL-10. Consequently, those macrophages set up the environment for a potent T helper type 1 (T(H)1)-T(H)17 response. Global gene expression analysis demonstrated that exogenous IRF5 upregulated or downregulated expression of established phenotypic markers of M1 or M2 macrophages, respectively. Our data suggest a critical role for IRF5 in M1 macrophage polarization and define a previously unknown function for IRF5 as a transcriptional repressor.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              M-1/M-2 macrophages and the Th1/Th2 paradigm.

              Evidence is provided that macrophages can make M-1 or M-2 responses. The concept of M-1/M-2 fomented from observations that macrophages from prototypical Th1 strains (C57BL/6, B10D2) are more easily activated to produce NO with either IFN-gamma or LPS than macrophages from Th2 strains (BALB/c, DBA/2). In marked contrast, LPS stimulates Th2, but not Th1, macrophages to increase arginine metabolism to ornithine. Thus, M-1/M-2 does not simply describe activated or unactivated macrophages, but cells expressing distinct metabolic programs. Because NO inhibits cell division, while ornithine can stimulate cell division (via polyamines), these results also indicate that M-1 and M-2 responses can influence inflammatory reactions in opposite ways. Macrophage TGF-beta1, which inhibits inducible NO synthase and stimulates arginase, appears to play an important role in regulating the balance between M-1 and M-2. M-1/M-2 phenotypes are independent of T or B lymphocytes because C57BL/6 and BALB/c NUDE or SCID macrophages also exhibit M-1/M-2. Indeed, M-1/M-2 proclivities are magnified in NUDE and SCID mice. Finally, C57BL/6 SCID macrophages cause CB6F1 lymphocytes to increase IFN-gamma production, while BALB/c SCID macrophages increase TGF-beta production. Together, the results indicate that M-1- or M-2-dominant macrophage responses can influence whether Th1/Th2 or other types of inflammatory responses occur.
                Bookmark

                Author and article information

                Contributors
                URI : http://frontiersin.org/people/u/238427
                URI : http://frontiersin.org/people/u/238442
                URI : http://frontiersin.org/people/u/187777
                Journal
                Front Immunol
                Front Immunol
                Front. Immunol.
                Frontiers in Immunology
                Frontiers Media S.A.
                1664-3224
                19 November 2015
                2015
                : 6
                : 571
                Affiliations
                [1] 1Centre for Molecular and Cellular Biology of Inflammation (CMCBI), Division of Immunology, Infection and Inflammatory Disease, King’s College London , London, UK
                Author notes

                Edited by: Elisabetta Padovan, Basel University Hospital and University of Basel, Switzerland

                Reviewed by: Paul Garside, University of Glasgow, UK; Florent Ginhoux, Singapore Immunology Network, Singapore

                *Correspondence: Leonie S. Taams, leonie.taams@ 123456kcl.ac.uk

                Specialty section: This article was submitted to Immunological Memory, a section of the journal Frontiers in Immunology

                Article
                10.3389/fimmu.2015.00571
                4652039
                26635790
                f2b1ca05-edbb-40d5-8a5e-7a16afc188c2
                Copyright © 2015 Roberts, Dickinson and Taams.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.

                History
                : 27 May 2015
                : 26 October 2015
                Page count
                Figures: 3, Tables: 1, Equations: 0, References: 232, Pages: 19, Words: 18450
                Categories
                Immunology
                Review

                Immunology
                rheumatoid arthritis,inflammation,immune regulation,cell polarization,myeloid cell,t helper cell,treg

                Comments

                Comment on this article