48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      An increase in cancer stem cell population after primary systemic therapy is a poor prognostic factor in breast cancer

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          The cancer stem cell (CSC) hypothesis has important clinical implications for cancer therapeutics because of the proposed role of CSCs in chemoresistance. The aim of this study was to investigate changes in the CSC populations before and after primary systemic therapy (PST) and their prognostic role in human breast cancer.

          Methods:

          Paired samples (before and after PST) of breast cancer tissue were obtained from clinical stage II or III patients ( n=92) undergoing PST with the regimen of doxorubicin plus docetaxel (AD) ( n=50) or doxorubicin plus cyclophosphamide (AC) ( n=42) and subsequent breast resection. The proportions of putative CSCs with CD44+/CD24− or aldehyde dehydrogenase 1+ (ALDH1+) phenotypes were determined by immunohistochemistry.

          Results:

          A higher proportion of CD44+/CD24− tumour cells and ALDH1 positivity in pre-chemotherapy tissue was correlated with higher histologic grade, oestrogen receptor (ER) negativity, high Ki-67 proliferation index and basal-like subtype of breast cancer. Aldehyde dehydrogenase 1 positivity in pre-chemotherapy biopsy was also associated with a higher rate of pathologic complete response following PST. In comparisons of putative CSC populations before and after PST, the proportions of CD44+/CD24− and ALDH1+ tumour cells were significantly increased after PST. The cases with increased CD44+/CD24− tumour cell populations after PST showed high Ki-67 proliferation index in post-chemotherapy specimens and those with increased ALDH1+ tumour cell population after PST were associated with ER negativity and p53 overexpression. Furthermore, cases showing such an increase had significantly shorter disease-free survival time than those with no change or a reduced number of CSCs, and the survival difference was most notable with regard to the changes of ALDH1+ tumour cell population in the patients who received AC regimen.

          Conclusion:

          The present study provides the clinical evidence that the putative CSCs in breast cancer are chemoresistant and are associated with tumour progression, emphasising the need for targeting of CSCs in the breast cancer therapeutics.

          Related collections

          Most cited references30

          • Record: found
          • Abstract: found
          • Article: not found

          Identification of pancreatic cancer stem cells.

          Emerging evidence has suggested that the capability of a tumor to grow and propagate is dependent on a small subset of cells within a tumor, termed cancer stem cells. Although data have been provided to support this theory in human blood, brain, and breast cancers, the identity of pancreatic cancer stem cells has not been determined. Using a xenograft model in which primary human pancreatic adenocarcinomas were grown in immunocompromised mice, we identified a highly tumorigenic subpopulation of pancreatic cancer cells expressing the cell surface markers CD44, CD24, and epithelial-specific antigen (ESA). Pancreatic cancer cells with the CD44(+)CD24(+)ESA(+) phenotype (0.2-0.8% of pancreatic cancer cells) had a 100-fold increased tumorigenic potential compared with nontumorigenic cancer cells, with 50% of animals injected with as few as 100 CD44(+)CD24(+)ESA(+) cells forming tumors that were histologically indistinguishable from the human tumors from which they originated. The enhanced ability of CD44(+)CD24(+)ESA(+) pancreatic cancer cells to form tumors was confirmed in an orthotopic pancreatic tail injection model. The CD44(+)CD24(+)ESA(+) pancreatic cancer cells showed the stem cell properties of self-renewal, the ability to produce differentiated progeny, and increased expression of the developmental signaling molecule sonic hedgehog. Identification of pancreatic cancer stem cells and further elucidation of the signaling pathways that regulate their growth and survival may provide novel therapeutic approaches to treat pancreatic cancer, which is notoriously resistant to standard chemotherapy and radiation.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy.

            Tumorigenic breast cancer cells that express high levels of CD44 and low or undetectable levels of CD24 (CD44(>)/CD24(>/low)) may be resistant to chemotherapy and therefore responsible for cancer relapse. These tumorigenic cancer cells can be isolated from breast cancer biopsies and propagated as mammospheres in vitro. In this study, we aimed to test directly in human breast cancers the effect of conventional chemotherapy or lapatinib (an epidermal growth factor receptor [EGFR]/HER2 pathway inhibitor) on this tumorigenic CD44(>) and CD24(>/low) cell population. Paired breast cancer core biopsies were obtained from patients with primary breast cancer before and after 12 weeks of treatment with neoadjuvant chemotherapy (n = 31) or, for patients with HER2-positive tumors, before and after 6 weeks of treatment with the EGFR/HER2 inhibitor lapatinib (n = 21). Single-cell suspensions established from these biopsies were stained with antibodies against CD24, CD44, and lineage markers and analyzed by flow cytometry. The potential of cells from biopsy samples taken before and after treatment to form mammospheres in culture was compared. All statistical tests were two-sided. Chemotherapy treatment increased the percentage of CD44(>)/CD24(>/low) cells (mean at baseline vs 12 weeks, 4.7%, 95% confidence interval [CI] = 3.5% to 5.9%, vs 13.6%, 95% CI = 10.9% to 16.3%; P )/CD24(>/low) cells (mean at baseline vs 6 weeks, 10.0%, 95% CI = 7.2% to 12.8%, vs 7.5%, 95% CI = 4.1% to 10.9%) and a statistically non-significant decrease in MSFE (mean at baseline vs 6 weeks, 16.1%, 95% CI = 8.7% to 23.5%, vs 10.8%, 95% CI = 4.0% to 17.6%). These studies provide clinical evidence for a subpopulation of chemotherapy-resistant breast cancer-initiating cells. Lapatinib did not lead to an increase in these tumorigenic cells, and, in combination with conventional therapy, specific pathway inhibitors may provide a therapeutic strategy for eliminating these cells to decrease recurrence and improve long-term survival.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma

              Background Recently, a small population of cancer stem cells in adult and pediatric brain tumors has been identified. Some evidence has suggested that CD133 is a marker for a subset of leukemia and glioblastoma cancer stem cells. Especially, CD133 positive cells isolated from human glioblastoma may initiate tumors and represent novel targets for therapeutics. The gene expression and the drug resistance property of CD133 positive cancer stem cells, however, are still unknown. Results In this study, by FACS analysis we determined the percentage of CD133 positive cells in three primary cultured cell lines established from glioblastoma patients 10.2%, 69.7% and 27.5%, respectively. We also determined the average mRNA levels of markers associated with neural precursors. For example, CD90, CD44, CXCR4, Nestin, Msi1 and MELK mRNA on CD133 positive cells increased to 15.6, 5.7, 337.8, 21.4, 84 and 1351 times, respectively, compared to autologous CD133 negative cells derived from cell line No. 66. Additionally, CD133 positive cells express higher levels of BCRP1 and MGMT mRNA, as well as higher mRNA levels of genes that inhibit apoptosis. Furthermore, CD133 positive cells were significantly resistant to chemotherapeutic agents including temozolomide, carboplatin, paclitaxel (Taxol) and etoposide (VP16) compared to autologous CD133 negative cells. Finally, CD133 expression was significantly higher in recurrent GBM tissue obtained from five patients as compared to their respective newly diagnosed tumors. Conclusion Our study for the first time provided evidence that CD133 positive cancer stem cells display strong capability on tumor's resistance to chemotherapy. This resistance is probably contributed by the CD133 positive cell with higher expression of on BCRP1 and MGMT, as well as the anti-apoptosis protein and inhibitors of apoptosis protein families. Future treatment should target this small population of CD133 positive cancer stem cells in tumors to improve the survival of brain tumor patients.
                Bookmark

                Author and article information

                Journal
                Br J Cancer
                British Journal of Cancer
                Nature Publishing Group
                0007-0920
                1532-1827
                24 May 2011
                10 May 2011
                : 104
                : 11
                : 1730-1738
                Affiliations
                [1 ]simpleDepartment of Pathology, Seoul National University Hospital , 28 Yeongon-dong, Jongno-gu, Seoul 110-744, Korea
                [2 ]simpleDepartment of Internal Medicine, Seoul National University College of Medicine , 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
                [3 ]simpleDepartment of Surgery, Seoul National University College of Medicine , 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
                [4 ]simpleBreast Care Center, Seoul National University Bundang Hospital , 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Korea
                [5 ]simpleDepartment of Radiation Oncology, Seoul National University College of Medicine , 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
                [6 ]simpleDepartment of Pathology, Seoul National University Bundang Hospital , 300 Gumi-dong, Bundang-gu, Seongnam-si, Gyeonggi 463-707, Korea
                [7 ]simpleDepartment of Pathology, Seoul National University College of Medicine , 28 Yeongon-dong, Jongno-gu, Seoul 110-799, Korea
                Author notes
                Article
                bjc2011159
                10.1038/bjc.2011.159
                3111169
                21559013
                f2b6da5a-707b-42ae-8e31-e4079df31054
                Copyright © 2011 Cancer Research UK
                History
                : 05 April 2011
                : 11 April 2011
                Categories
                Translational Therapeutics

                Oncology & Radiotherapy
                cancer stem cells,breast cancer,primary systemic therapy,chemoresistance

                Comments

                Comment on this article