35
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Intact p53-Dependent Responses in miR-34–Deficient Mice

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          MicroRNAs belonging to the miR-34 family have been proposed as critical modulators of the p53 pathway and potential tumor suppressors in human cancers. To formally test these hypotheses, we have generated mice carrying targeted deletion of all three members of this microRNA family. We show that complete inactivation of miR-34 function is compatible with normal development in mice. Surprisingly, p53 function appears to be intact in miR-34–deficient cells and tissues. Although loss of miR-34 expression leads to a slight increase in cellular proliferation in vitro, it does not impair p53-induced cell cycle arrest or apoptosis. Furthermore, in contrast to p53-deficient mice, miR-34–deficient animals do not display increased susceptibility to spontaneous, irradiation-induced, or c-Myc–initiated tumorigenesis. We also show that expression of members of the miR-34 family is particularly high in the testes, lungs, and brains of mice and that it is largely p53-independent in these tissues. These findings indicate that miR-34 plays a redundant function in the p53 pathway and suggest additional p53-independent functions for this family of miRNAs.

          Author Summary

          MicroRNAs (miRNAs) are small, non-coding RNAs that broadly regulate gene expression. MicroRNA deregulation is a common feature of human cancers, and numerous miRNAs have oncogenic or tumor suppressive properties. Members of the miR-34 family (miR-34a, miR-34b, and miR-34c) have been widely speculated to be important tumor suppressors and mediators of p53 function. Despite the growing body of evidence supporting this hypothesis, previous studies on miR-34 have been done in vitro or using non-physiologic expression levels of miR-34. Here, we probe the tumor suppressive functions of the miR-34 family in vivo by generating mice carrying targeted deletion of the entire miR-34 family. Our results show that the miR-34 family is not required for tumor suppression in vivo, and they suggest p53-independent functions for this family of miRNAs. Importantly, the mice generated from this study provide a tool for the scientific community to further investigate the physiologic functions of the miR-34 family.

          Related collections

          Most cited references45

          • Record: found
          • Abstract: found
          • Article: not found

          Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours.

          Mutations in the p53 tumour-suppressor gene are the most frequently observed genetic lesions in human cancers. To investigate the role of the p53 gene in mammalian development and tumorigenesis, a null mutation was introduced into the gene by homologous recombination in murine embryonic stem cells. Mice homozygous for the null allele appear normal but are prone to the spontaneous development of a variety of neoplasms by 6 months of age. These observations indicate that a normal p53 gene is dispensable for embryonic development, that its absence predisposes the animal to neoplastic disease, and that an oncogenic mutant form of p53 is not obligatory for the genesis of many types of tumours.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a.

            Oncogenic ras can transform most immortal rodent cells to a tumorigenic state. However, transformation of primary cells by ras requires either a cooperating oncogene or the inactivation of tumor suppressors such as p53 or p16. Here we show that expression of oncogenic ras in primary human or rodent cells results in a permanent G1 arrest. The arrest induced by ras is accompanied by accumulation of p53 and p16, and is phenotypically indistinguishable from cellular senescence. Inactivation of either p53 or p16 prevents ras-induced arrest in rodent cells, and E1A achieves a similar effect in human cells. These observations suggest that the onset of cellular senescence does not simply reflect the accumulation of cell divisions, but can be prematurely activated in response to an oncogenic stimulus. Negation of ras-induced senescence may be relevant during multistep tumorigenesis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              p53 mutations in human cancers.

              Mutations in the evolutionarily conserved codons of the p53 tumor suppressor gene are common in diverse types of human cancer. The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues. Analysis of these mutations can provide clues to the etiology of these diverse tumors and to the function of specific regions of p53. Transitions predominate in colon, brain, and lymphoid malignancies, whereas G:C to T:A transversions are the most frequent substitutions observed in cancers of the lung and liver. Mutations at A:T base pairs are seen more frequently in esophageal carcinomas than in other solid tumors. Most transitions in colorectal carcinomas, brain tumors, leukemias, and lymphomas are at CpG dinucleotide mutational hot spots. G to T transversions in lung, breast, and esophageal carcinomas are dispersed among numerous codons. In liver tumors in persons from geographic areas in which both aflatoxin B1 and hepatitis B virus are cancer risk factors, most mutations are at one nucleotide pair of codon 249. These differences may reflect the etiological contributions of both exogenous and endogenous factors to human carcinogenesis.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Genet
                PLoS Genet
                plos
                plosgen
                PLoS Genetics
                Public Library of Science (San Francisco, USA )
                1553-7390
                1553-7404
                July 2012
                July 2012
                26 July 2012
                : 8
                : 7
                : e1002797
                Affiliations
                [1 ]Cancer Biology and Genetics Program, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
                [2 ]Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, New York, United States of America
                Cincinnati Children's Hospital Medical Center, United States of America
                Author notes

                Conceived and designed the experiments: AV CPC. Performed the experiments: AV CPC EY AD PM CB PO Y-CH JAV WPM. Analyzed the data: AV CPC Y-CH EY AD PM JAV CB WPM. Wrote the paper: AV CPC.

                Article
                PGENETICS-D-12-00095
                10.1371/journal.pgen.1002797
                3406012
                22844244
                f2b97502-4def-4cfa-9b28-cdd99048d135
                Concepcion et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 11 January 2012
                : 15 May 2012
                Page count
                Pages: 12
                Categories
                Research Article
                Biology
                Genetics
                Cancer Genetics
                Gene Function
                Model Organisms
                Animal Models
                Mouse

                Genetics
                Genetics

                Comments

                Comment on this article