42
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Waning Immunity after the BNT162b2 Vaccine in Israel

      research-article

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          In December 2020, Israel began a mass vaccination campaign against coronavirus disease 2019 (Covid-19) by administering the BNT162b2 vaccine, which led to a sharp curtailing of the outbreak. After a period with almost no cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, a resurgent Covid-19 outbreak began in mid-June 2021. Possible reasons for the resurgence were reduced vaccine effectiveness against the delta (B.1.617.2) variant and waning immunity. The extent of waning immunity of the vaccine against the delta variant in Israel is unclear.

          Methods

          We used data on confirmed infection and severe disease collected from an Israeli national database for the period of July 11 to 31, 2021, for all Israeli residents who had been fully vaccinated before June 2021. We used a Poisson regression model to compare rates of confirmed SARS-CoV-2 infection and severe Covid-19 among persons vaccinated during different time periods, with stratification according to age group and with adjustment for possible confounding factors.

          Results

          Among persons 60 years of age or older, the rate of infection in the July 11–31 period was higher among persons who became fully vaccinated in January 2021 (when they were first eligible) than among those fully vaccinated 2 months later, in March (rate ratio, 1.6; 95% confidence interval [CI], 1.3 to 2.0). Among persons 40 to 59 years of age, the rate ratio for infection among those fully vaccinated in February (when they were first eligible), as compared with 2 months later, in April, was 1.7 (95% CI, 1.4 to 2.1). Among persons 16 to 39 years of age, the rate ratio for infection among those fully vaccinated in March (when they were first eligible), as compared with 2 months later, in May, was 1.6 (95% CI, 1.3 to 2.0). The rate ratio for severe disease among persons fully vaccinated in the month when they were first eligible, as compared with those fully vaccinated in March, was 1.8 (95% CI, 1.1 to 2.9) among persons 60 years of age or older and 2.2 (95% CI, 0.6 to 7.7) among those 40 to 59 years of age; owing to small numbers, the rate ratio could not be calculated among persons 16 to 39 years of age.

          Conclusions

          These findings indicate that immunity against the delta variant of SARS-CoV-2 waned in all age groups a few months after receipt of the second dose of vaccine.

          Related collections

          Most cited references16

          • Record: found
          • Abstract: found
          • Article: not found

          Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection

          Predictive models of immune protection from COVID-19 are urgently needed to identify correlates of protection to assist in the future deployment of vaccines. To address this, we analyzed the relationship between in vitro neutralization levels and the observed protection from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection using data from seven current vaccines and from convalescent cohorts. We estimated the neutralization level for 50% protection against detectable SARS-CoV-2 infection to be 20.2% of the mean convalescent level (95% confidence interval (CI) = 14.4-28.4%). The estimated neutralization level required for 50% protection from severe infection was significantly lower (3% of the mean convalescent level; 95% CI = 0.7-13%, P = 0.0004). Modeling of the decay of the neutralization titer over the first 250 d after immunization predicts that a significant loss in protection from SARS-CoV-2 infection will occur, although protection from severe disease should be largely retained. Neutralization titers against some SARS-CoV-2 variants of concern are reduced compared with the vaccine strain, and our model predicts the relationship between neutralization and efficacy against viral variants. Here, we show that neutralization level is highly predictive of immune protection, and provide an evidence-based model of SARS-CoV-2 immune protection that will assist in developing vaccine strategies to control the future trajectory of the pandemic.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta) Variant

            Background The B.1.617.2 (delta) variant of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus that causes coronavirus disease 2019 (Covid-19), has contributed to a surge in cases in India and has now been detected across the globe, including a notable increase in cases in the United Kingdom. The effectiveness of the BNT162b2 and ChAdOx1 nCoV-19 vaccines against this variant has been unclear. Methods We used a test-negative case–control design to estimate the effectiveness of vaccination against symptomatic disease caused by the delta variant or the predominant strain (B.1.1.7, or alpha variant) over the period that the delta variant began circulating. Variants were identified with the use of sequencing and on the basis of the spike ( S ) gene status. Data on all symptomatic sequenced cases of Covid-19 in England were used to estimate the proportion of cases with either variant according to the patients’ vaccination status. Results Effectiveness after one dose of vaccine (BNT162b2 or ChAdOx1 nCoV-19) was notably lower among persons with the delta variant (30.7%; 95% confidence interval [CI], 25.2 to 35.7) than among those with the alpha variant (48.7%; 95% CI, 45.5 to 51.7); the results were similar for both vaccines. With the BNT162b2 vaccine, the effectiveness of two doses was 93.7% (95% CI, 91.6 to 95.3) among persons with the alpha variant and 88.0% (95% CI, 85.3 to 90.1) among those with the delta variant. With the ChAdOx1 nCoV-19 vaccine, the effectiveness of two doses was 74.5% (95% CI, 68.4 to 79.4) among persons with the alpha variant and 67.0% (95% CI, 61.3 to 71.8) among those with the delta variant. Conclusions Only modest differences in vaccine effectiveness were noted with the delta variant as compared with the alpha variant after the receipt of two vaccine doses. Absolute differences in vaccine effectiveness were more marked after the receipt of the first dose. This finding would support efforts to maximize vaccine uptake with two doses among vulnerable populations. (Funded by Public Health England.)
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              BNT162b2 mRNA Covid-19 Vaccine in a Nationwide Mass Vaccination Setting

              Abstract Background As mass vaccination campaigns against coronavirus disease 2019 (Covid-19) commence worldwide, vaccine effectiveness needs to be assessed for a range of outcomes across diverse populations in a noncontrolled setting. In this study, data from Israel’s largest health care organization were used to evaluate the effectiveness of the BNT162b2 mRNA vaccine. Methods All persons who were newly vaccinated during the period from December 20, 2020, to February 1, 2021, were matched to unvaccinated controls in a 1:1 ratio according to demographic and clinical characteristics. Study outcomes included documented infection with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), symptomatic Covid-19, Covid-19–related hospitalization, severe illness, and death. We estimated vaccine effectiveness for each outcome as one minus the risk ratio, using the Kaplan–Meier estimator. Results Each study group included 596,618 persons. Estimated vaccine effectiveness for the study outcomes at days 14 through 20 after the first dose and at 7 or more days after the second dose was as follows: for documented infection, 46% (95% confidence interval [CI], 40 to 51) and 92% (95% CI, 88 to 95); for symptomatic Covid-19, 57% (95% CI, 50 to 63) and 94% (95% CI, 87 to 98); for hospitalization, 74% (95% CI, 56 to 86) and 87% (95% CI, 55 to 100); and for severe disease, 62% (95% CI, 39 to 80) and 92% (95% CI, 75 to 100), respectively. Estimated effectiveness in preventing death from Covid-19 was 72% (95% CI, 19 to 100) for days 14 through 20 after the first dose. Estimated effectiveness in specific subpopulations assessed for documented infection and symptomatic Covid-19 was consistent across age groups, with potentially slightly lower effectiveness in persons with multiple coexisting conditions. Conclusions This study in a nationwide mass vaccination setting suggests that the BNT162b2 mRNA vaccine is effective for a wide range of Covid-19–related outcomes, a finding consistent with that of the randomized trial.
                Bookmark

                Author and article information

                Journal
                N Engl J Med
                N Engl J Med
                nejm
                The New England Journal of Medicine
                Massachusetts Medical Society
                0028-4793
                1533-4406
                27 October 2021
                27 October 2021
                : NEJMoa2114228
                Affiliations
                From Technion–Israel Institute of Technology, Haifa (Y.G.), the Hebrew University of Jerusalem (M.M.), and the Israeli Ministry of Health (O.B., E.J.H., S.A.-P., N.A.), Jerusalem, the Weizmann Institute of Science, Rehovot (Y.M.B.-O., R.M.), the Gertner Institute for Epidemiology and Health Policy Research, Sheba Medical Center Tel Hashomer, Ramat Gan (L.F., A.H.), Tel Aviv University, Tel Aviv (A.H.), and Ben Gurion University, Beersheva (E.J.H.) — all in Israel.
                Author notes
                Dr. Goldberg can be contacted at yairgo@ 123456technion.ac.il or at the Faculty of Industrial Engineering and Management, Technion–Israel Institute of Technology, Haifa 3200003, Israel.

                Drs. Goldberg and Mandel and Drs. Alroy-Preis, Ash, and Huppert contributed equally to this article.

                Author information
                http://orcid.org/0000-0002-4605-6566
                Article
                NJ202110273852402
                10.1056/NEJMoa2114228
                8609604
                34706170
                f2be58ea-9a13-4ba8-92cc-8a4c78c37b05
                Copyright © 2021 Massachusetts Medical Society. All rights reserved.

                This article is made available via the PMC Open Access Subset for unrestricted re-use, except commercial resale, and analyses in any form or by any means with acknowledgment of the original source. These permissions are granted for the duration of the Covid-19 pandemic or until revoked in writing. Upon expiration of these permissions, PMC is granted a license to make this article available via PMC and Europe PMC, subject to existing copyright protections.

                History
                Categories
                Original Article
                Custom metadata
                2021-10-27T17:00:00-04:00
                2021
                10
                27
                17
                00
                00
                -04:00

                Comments

                Comment on this article