20
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Systematic evaluation of RNA quality, microarray data reliability and pathway analysis in fresh, fresh frozen and formalin-fixed paraffin-embedded tissue samples

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Formalin-fixed paraffin-embedded (FFPE) tissues are valuable resources commonly used in pathology. However, formalin fixation modifies nucleic acids challenging the isolation of high-quality RNA for genetic profiling. Here, we assessed feasibility and reliability of microarray studies analysing transcriptome data from fresh, fresh-frozen (FF) and FFPE tissues. We show that reproducible microarray data can be generated from only 2 ng FFPE-derived RNA. For RNA quality assessment, fragment size distribution (DV200) and qPCR proved most suitable. During RNA isolation, extending tissue lysis time to 10 hours reduced high-molecular-weight species, while additional incubation at 70 °C markedly increased RNA yields. Since FF- and FFPE-derived microarrays constitute different data entities, we used indirect measures to investigate gene signal variation and relative gene expression. Whole-genome analyses revealed high concordance rates, while reviewing on single-genes basis showed higher data variation in FFPE than FF arrays. Using an experimental model, gene set enrichment analysis (GSEA) of FFPE-derived microarrays and fresh tissue-derived RNA-Seq datasets yielded similarly affected pathways confirming the applicability of FFPE tissue in global gene expression analysis. Our study provides a workflow comprising RNA isolation, quality assessment and microarray profiling using minimal RNA input, thus enabling hypothesis-generating pathway analyses from limited amounts of precious, pathologically significant FFPE tissues.

          Related collections

          Most cited references25

          • Record: found
          • Abstract: found
          • Article: not found

          Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples.

          Formalin-fixed archival samples are known to be poor materials for molecular biological applications. We conducted a series of experiments to understand the alterations in RNA in fixed tissue. We found that formalin-fixed tissue was resistant to solubilization by chaotropic agents. However, proteinase K completely solubilized the fixed tissue and enabled the extraction of almost the same amount of RNA as from a fresh sample. The extracted RNA did not show apparent degradation. However, as reported, successful PCR amplification was limited to short targets. The nature of such 'fixed' RNA was analyzed using synthetic homo-oligo RNAs. The heterogeneous increase in molecular weight of the RNAs, measured by MALDI-TOF mass spectrometry, showed that all four bases showed addition of mono-methylol (-CH(2)OH) groups at various rates. The modification rate varied from 40% for adenine to 4% for uracil. In addition, some adenines underwent dimerization through methylene bridging. The majority of the methylol groups, however, could be removed from bases by simply elevating the temperature in formalin-free buffer. This demodification proved effective in restoring the template activity of RNA from fixed tissue. The improvement in PCR results suggested that more than half of the modification was removed by this demodification.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Determinants of RNA Quality from FFPE Samples

            The large archives of formalin-fixed paraffin-embedded (FFPE) tissue specimens that exist are a highly valuable source of sample material for molecular biological analysis, including gene expression profiling. However, current data on adverse effects of standard pathological practice on the usefulness of biomolecular analytes obtained from such archived specimens is largely anecdotal. Here, we present a systematic examination of the most relevant parameters for integrity and useability of RNA obtained from FFPE samples, including storage time and conditions, fixation time, and specimen size. The results are particularly relevant for any application relying on cDNA synthesis as an initial step of the procedure, such as RT-PCR, and microarray analysis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Reliable gene expression measurements from degraded RNA by quantitative real-time PCR depend on short amplicons and a proper normalization.

              Quantitative reverse transcriptase real-time PCR (QRT-PCR) is a robust method to quantitate RNA abundance. The procedure is highly sensitive and reproducible as long as the initial RNA is intact. However, breaks in the RNA due to chemical or enzymatic cleavage may reduce the number of RNA molecules that contain intact amplicons. As a consequence, the number of molecules available for amplification decreases. We determined the relation between RNA fragmentation and threshold values (Ct values) in subsequent QRT-PCR for four genes in an experimental model of intact and partially hydrolyzed RNA derived from a cell line and we describe the relation between RNA integrity, amplicon size and Ct values in this biologically homogenous system. We demonstrate that degradation-related shifts of Ct values can be compensated by calculating delta Ct values between test genes and the mean values of several control genes. These delta Ct values are less sensitive to fragmentation of the RNA and are unaffected by varying amounts of input RNA. The feasibility of the procedure was demonstrated by comparing Ct values from a larger panel of genes in intact and in partially degraded RNA. We compared Ct values from intact RNA derived from well-preserved tumor material and from fragmented RNA derived from formalin-fixed, paraffin-embedded (FFPE) samples of the same tumors. We demonstrate that the relative abundance of gene expression can be based on FFPE material even when the amount of RNA in the sample and the extent of fragmentation are not known.
                Bookmark

                Author and article information

                Contributors
                isabella.wimmer@meduniwien.ac.at
                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group UK (London )
                2045-2322
                20 April 2018
                20 April 2018
                2018
                : 8
                : 6351
                Affiliations
                [1 ]ISNI 0000 0000 9259 8492, GRID grid.22937.3d, Department of Neuroimmunology, Center for Brain Research, , Medical University of Vienna, ; Vienna, Austria
                [2 ]ISNI 000000041936754X, GRID grid.38142.3c, Ann Romney Center for Neurological Diseases, Brigham and Women’s Hospital, , Harvard Medical School, ; Boston, USA
                [3 ]GRID grid.418298.e, Epilepsy Center Bethel, Krankenhaus Mara, ; Bielefeld, Germany
                Author information
                http://orcid.org/0000-0003-2231-2120
                Article
                24781
                10.1038/s41598-018-24781-6
                5910432
                29679021
                f2c12163-d12a-4492-a8e5-373f65cfaec8
                © The Author(s) 2018

                Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

                History
                : 3 November 2017
                : 10 April 2018
                Categories
                Article
                Custom metadata
                © The Author(s) 2018

                Uncategorized
                Uncategorized

                Comments

                Comment on this article