Blog
About

46
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      P2X receptors as cell-surface ATP sensors in health and disease.

      Nature

      Receptors, Purinergic P2X, metabolism, chemistry, Receptors, Purinergic P2, pathology, Pain, Inflammation, Humans, Health, Disease, Cell Membrane, analysis, Adenosine Triphosphate

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          P2X receptors are membrane ion channels activated by the binding of extracellular adenosine triphosphate (ATP). For years their functional significance was consigned to distant regions of the autonomic nervous system, but recent work indicates several further key roles, such as afferent signalling, chronic pain, and in autocrine loops of endothelial and epithelial cells. P2X receptors have a molecular architecture distinct from other ion channel protein families, and have several unique functional properties.

          Related collections

          Most cited references 61

          • Record: found
          • Abstract: found
          • Article: not found

          P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury.

          Pain after nerve damage is an expression of pathological operation of the nervous system, one hallmark of which is tactile allodynia-pain hypersensitivity evoked by innocuous stimuli. Effective therapy for this pain is lacking, and the underlying mechanisms are poorly understood. Here we report that pharmacological blockade of spinal P2X4 receptors (P2X4Rs), a subtype of ionotropic ATP receptor, reversed tactile allodynia caused by peripheral nerve injury without affecting acute pain behaviours in naive animals. After nerve injury, P2X4R expression increased strikingly in the ipsilateral spinal cord, and P2X4Rs were induced in hyperactive microglia but not in neurons or astrocytes. Intraspinal administration of P2X4R antisense oligodeoxynucleotide decreased the induction of P2X4Rs and suppressed tactile allodynia after nerve injury. Conversely, intraspinal administration of microglia in which P2X4Rs had been induced and stimulated, produced tactile allodynia in naive rats. Taken together, our results demonstrate that activation of P2X4Rs in hyperactive microglia is necessary for tactile allodynia after nerve injury and is sufficient to produce tactile allodynia in normal animals. Thus, blocking P2X4Rs in microglia might be a new therapeutic strategy for pain induced by nerve injury.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Altered cytokine production in mice lacking P2X(7) receptors.

            The P2X(7) receptor (P2X(7)R) is an ATP-gated ion channel expressed by monocytes and macrophages. To directly address the role of this receptor in interleukin (IL)-1 beta post-translational processing, we have generated a P2X(7)R-deficient mouse line. P2X(7)R(-/-) macrophages respond to lipopolysaccharide and produce levels of cyclooxygenase-2 and pro-IL-1 beta comparable with those generated by wild-type cells. In response to ATP, however, pro-IL-1 beta produced by the P2X(7)R(-/-) cells is not externalized or activated by caspase-1. Nigericin, an alternate secretion stimulus, promotes release of 17-kDa IL-1 beta from P2X(7)R(-/-) macrophages. In response to in vivo lipopolysaccharide injection, both wild-type and P2X(7)R(-/-) animals display increases in peritoneal lavage IL-6 levels but no detectable IL-1. Subsequent ATP injection to wild-type animals promotes an increase in IL-1, which in turn leads to additional IL-6 production; similar increases did not occur in ATP-treated, LPS-primed P2X(7)R(-/-) animals. Absence of the P2X(7)R thus leads to an inability of peritoneal macrophages to release IL-1 in response to ATP. As a result of the IL-1 deficiency, in vivo cytokine signaling cascades are impaired in P2X(7)R-deficient animals. Together these results demonstrate that P2X(7)R activation can provide a signal that leads to maturation and release of IL-1 beta and initiation of a cytokine cascade.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Disruption of the P2X7 purinoceptor gene abolishes chronic inflammatory and neuropathic pain.

              The P2X(7) purinoceptor is a ligand-gated cation channel, expressed predominantly by cells of immune origin, with a unique phenotype which includes release of biologically active inflammatory cytokine, interleukin (IL)-1beta following activation, and unique ion channel biophysics observed only in this receptor family. Here we demonstrate that in mice lacking this receptor, inflammatory (in an adjuvant-induced model) and neuropathic (in a partial nerve ligation model) hypersensitivity is completely absent to both mechanical and thermal stimuli, whilst normal nociceptive processing is preserved. The knockout animals were unimpaired in their ability to produce mRNA for pro-IL-1beta, and cytometric analysis of paw and systemic cytokines from knockout and wild-type animals following adjuvant insult suggests a selective effect of the gene deletion on release of IL-1beta and IL-10, with systemic reductions in adjuvant-induced increases in IL-6 and MCP-1. In addition, we show that this receptor is upregulated in human dorsal root ganglia and injured nerves obtained from chronic neuropathic pain patients. We hypothesise that the P2X(7) receptor, via regulation of mature IL-1beta production, plays a common upstream transductional role in the development of pain of neuropathic and inflammatory origin. Drugs which block this target may have the potential to deliver broad-spectrum analgesia.
                Bookmark

                Author and article information

                Journal
                10.1038/nature04886
                16885977

                Comments

                Comment on this article