48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      Long-read sequencing identifies GGC repeat expansions in NOTCH2NLC associated with neuronal intranuclear inclusion disease

      Read this article at

      ScienceOpenPublisherPubMed
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references23

          • Record: found
          • Abstract: found
          • Article: not found

          Human-Specific NOTCH2NL Genes Affect Notch Signaling and Cortical Neurogenesis

          Genetic changes causing brain size expansion in human evolution have remained elusive. Notch signaling is essential for radial glia stem cell proliferation and is a determinant of neuronal number in the mammalian cortex. We find three paralogs of human-specific NOTCH2NL are highly expressed in radial glia. Functional analysis reveals different alleles of NOTCH2NL have varying potencies to enhance Notch signaling by interacting directly with NOTCH receptors. Consistent with a role in Notch signaling, NOTCH2NL ectopic expression delays differentiation of neuronal progenitors, while deletion accelerates differentiation into cortical neurons. Furthermore, NOTCH2NL genes provide the breakpoints in 1q21.1 distal deletion/duplication syndrome, where duplications are associated with macrocephaly and autism, and deletions with microcephaly and schizophrenia. Thus, the emergence of human-specific NOTCH2NL genes may have contributed to the rapid evolution of the larger human neocortex accompanied by loss of genomic stability at the 1q21.1 locus and resulting recurrent neurodevelopmental disorders. Human-specific Notch paralogs are expressed in radial glia, enhance Notch signaling and impact neuronal differentiation.
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Structural variants identified by Oxford Nanopore PromethION sequencing of the human genome

            We sequenced the genome of the Yoruban reference individual NA19240 on the long-read sequencing platform Oxford Nanopore PromethION for evaluation and benchmarking of recently published aligners and germline structural variant calling tools, as well as a comparison with the performance of structural variant calling from short-read sequencing data. The structural variant caller Sniffles after NGMLR or minimap2 alignment provides the most accurate results, but additional confidence or sensitivity can be obtained by a combination of multiple variant callers. Sensitive and fast results can be obtained by minimap2 for alignment and a combination of Sniffles and SVIM for variant identification. We describe a scalable workflow for identification, annotation, and characterization of tens of thousands of structural variants from long-read genome sequencing of an individual or population. By discussing the results of this well-characterized reference individual, we provide an approximation of what can be expected in future long-read sequencing studies aiming for structural variant identification.
              • Record: found
              • Abstract: found
              • Article: not found

              Neuronal intranuclear hyaline inclusion disease.

              Neuronal intranuclear hyaline inclusion disease (NIHID) is a rare neurodegenerative disorder characterized pathologically by the presence of eosinophilic intranuclear inclusions in neuronal and glial cells. It has been considered to be a heterogeneous disease entity because the clinical pictures of previously described cases were highly variable. In the present review, reported NIHID cases have been categorized into three clinical subgroups according to onset and disease duration, and the clinical phenotype of each subgroup is discussed. Neuronal intranuclear inclusions (NII) in NIHID are ubiquitinated and their prevalence is inversely correlated with neuronal loss, suggesting that NII formation is a protective mechanism involving the ubiquitin-proteasome-dependent proteolytic pathway. In several polyglutamine diseases, disease-related proteins containing abnormally expanded polyglutamine tracts aggregate in neuronal nuclei, resulting in NII formation. The similarity between NII in NIHID and polyglutamine diseases suggests that they are formed during a common proteolysis-related process that takes place in the nucleus. Although the pathogenetic mechanism underlying NIHID remains unknown, the data reviewed here suggest that it might be related to accumulation of as yet unidentified abnormal proteins or dysfunction of the intranuclear ubiquitin-proteasome pathway.

                Author and article information

                Journal
                Nature Genetics
                Nat Genet
                Springer Science and Business Media LLC
                1061-4036
                1546-1718
                July 22 2019
                Article
                10.1038/s41588-019-0459-y
                31332381
                f2d08491-4734-46f7-89e4-9edac2a0b043
                © 2019

                http://www.springer.com/tdm

                History

                Comments

                Comment on this article

                Related Documents Log