4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Enhanced Susceptibility of PINK1 Knockout Rats to α-Synuclein Fibrils.

      1 , 2
      Neuroscience
      Elsevier BV
      PINK1, Parkinson’s disease, aggregation, lewy bodies, pre-formed fibrils, synuclein

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The main neuropathological hallmarks of Parkinson's disease (PD) are loss of dopaminergic neurons in the substantia nigra and intraneuronal protein aggregates immunoreactive for α-synuclein phosphorylated at serine 129 (pS129). Most cases of PD are idiopathic; however, genetic mutations have been identified in several genes linked to familial PD. Mutations in the gene encoding α-synuclein are causally linked to dominantly inherited forms of PD and mutations in the PTEN-induced kinase-1 (PINK1) gene are linked to recessively inherited forms of PD. Because abnormal α-synuclein protein aggregates appear spontaneously in PINK1 knockout (KO) rats, we hypothesize that PINK1-deficiency causes endogenous α-synuclein to be more prone to aggregation. α-Synuclein aggregation does not normally occur in mice or rats, however, it can be induced by intracranial injection of α-synuclein pre-formed fibrils (PFFs), which also induces loss of dopaminergic nigral neurons 3-6 months post-injection. Because PINK1-deficiency is linked to early-onset PD, we further hypothesize that PINK1 KO rats will show earlier PFF-induced neurodegeneration compared to wild-type (WT) rats. Herein, we report that intracranial injection of α-synuclein PFFs into the dorsal striatum induced more abundant pS129 α-synuclein in PINK1 KO rat brains compared to WT littermate controls. Moreover, the synuclein extracted from the brains of PFF-injected PINK1 KO rats was more insoluble compared to PFF-injected WT littermates, suggesting greater progression of α-synuclein pathology in PINK1 KO rats. Four weeks post-injection, PFFs caused significant loss of dopaminergic neurons in the substantia nigra of PINK1 KO rats, but not WT controls. Together, our results indicate that PINK1 deficiency increases vulnerability to α-synuclein aggregation and dopaminergic neurodegeneration in vivo.

          Related collections

          Author and article information

          Journal
          Neuroscience
          Neuroscience
          Elsevier BV
          1873-7544
          0306-4522
          June 15 2020
          : 437
          Affiliations
          [1 ] Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States.
          [2 ] Center for Neurodegeneration and Experimental Therapeutics, The University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Neurology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States; Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL 35294, United States. Electronic address: mattgoldberg@uab.edu.
          Article
          S0306-4522(20)30255-4 NIHMS1588599
          10.1016/j.neuroscience.2020.04.032
          7510511
          32353461
          f2d96c83-662f-4b3d-8a87-49b801c308e5
          History

          pre-formed fibrils,PINK1,lewy bodies,aggregation,Parkinson’s disease,synuclein

          Comments

          Comment on this article