4
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cell cycle-related genes associate with sensitivity to hydrogen peroxide-induced toxicity

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Reactive oxygen species (ROS) such as hydrogen peroxide (H 2O 2) are well-described agents in physiology and pathology. Chronic inflammation causes incessant H 2O 2 generation associated with disease occurrences such as diabetes, autoimmunity, and cancer. In cancer, conditioning of the tumor microenvironment, e.g., hypoxia and ROS generation, has been associated with disease outcomes and therapeutic efficacy. Many reports have investigated the roles of the action of H 2O 2 across many cell lines and disease models. The genes predisposing tumor cell lines to H 2O 2-mediated demise are less deciphered, however. To this end, we performed in-house transcriptional profiling of 35 cell lines and simultaneously investigated each cell line's H 2O 2 inhibitory concentration (IC 25) based on metabolic activity. More than 100-fold differences were observed between the most resistant and sensitive cell lines. Correlation and gene ontology pathway analysis identified a rigid association with genes intertwined in cell cycle progression and proliferation, as such functional categories dominated the top ten significant processes. The ten most substantially correlating genes (Spearman r > 0.70 or < -0.70) were validated using qPCR, showing complete congruency with microarray analysis findings. Western blotting confirmed the correlation of cell cycle-related proteins negatively correlating with H 2O 2 IC 25. Top genes related to ROS production or antioxidant defense were only modest in correlation (Spearman r > 0.40 or < -0.40). In conclusion, our in-house transcriptomic correlation analysis revealed a set of cell cycle-associated genes associated with a priori resistance or sensitivity to H 2O 2-induced cellular demise with the detailed and causative roles of individual genes remaining unclear.

          Related collections

          Most cited references76

          • Record: found
          • Abstract: found
          • Article: not found

          Photodynamic therapy for cancer.

          The therapeutic properties of light have been known for thousands of years, but it was only in the last century that photodynamic therapy (PDT) was developed. At present, PDT is being tested in the clinic for use in oncology--to treat cancers of the head and neck, brain, lung, pancreas, intraperitoneal cavity, breast, prostate and skin. How does PDT work, and how can it be used to treat cancer and other diseases?
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach?

            Increased generation of reactive oxygen species (ROS) and an altered redox status have long been observed in cancer cells, and recent studies suggest that this biochemical property of cancer cells can be exploited for therapeutic benefits. Cancer cells in advanced stage tumours frequently exhibit multiple genetic alterations and high oxidative stress, suggesting that it might be possible to preferentially eliminate these cells by pharmacological ROS insults. However, the upregulation of antioxidant capacity in adaptation to intrinsic oxidative stress in cancer cells can confer drug resistance. Abrogation of such drug-resistant mechanisms by redox modulation could have significant therapeutic implications. We argue that modulating the unique redox regulatory mechanisms of cancer cells might be an effective strategy to eliminate these cells.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Modulation of oxidative stress as an anticancer strategy.

              The regulation of oxidative stress is an important factor in both tumour development and responses to anticancer therapies. Many signalling pathways that are linked to tumorigenesis can also regulate the metabolism of reactive oxygen species (ROS) through direct or indirect mechanisms. High ROS levels are generally detrimental to cells, and the redox status of cancer cells usually differs from that of normal cells. Because of metabolic and signalling aberrations, cancer cells exhibit elevated ROS levels. The observation that this is balanced by an increased antioxidant capacity suggests that high ROS levels may constitute a barrier to tumorigenesis. However, ROS can also promote tumour formation by inducing DNA mutations and pro-oncogenic signalling pathways. These contradictory effects have important implications for potential anticancer strategies that aim to modulate levels of ROS. In this Review, we address the controversial role of ROS in tumour development and in responses to anticancer therapies, and elaborate on the idea that targeting the antioxidant capacity of tumour cells can have a positive therapeutic impact.
                Bookmark

                Author and article information

                Contributors
                Journal
                Redox Biol
                Redox Biol
                Redox Biology
                Elsevier
                2213-2317
                17 January 2022
                April 2022
                17 January 2022
                : 50
                : 102234
                Affiliations
                [a ]ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Felix-Hausdorff-Str. 2, 17489, Greifswald, Germany
                [b ]Department of General, Visceral, Vascular, and Thorax Surgery, Greifswald University Medical Center, Felix-Hausdorff-Str. 2, 17475, Greifswald, Germany
                Author notes
                Article
                S2213-2317(22)00006-4 102234
                10.1016/j.redox.2022.102234
                8783094
                35063803
                f2d9a070-e2d1-4047-8973-61b5b20d970e
                © 2022 The Authors

                This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

                History
                : 20 August 2021
                : 31 December 2021
                : 11 January 2022
                Categories
                Research Paper

                cancer,hydrogen peroxide,oxidative stress,reactive oxygen species,ros

                Comments

                Comment on this article