25
views
0
recommends
+1 Recommend
1 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The future of marine biodiversity and marine ecosystem functioning in UK coastal and territorial waters (including UK Overseas Territories) – with an emphasis on marine macrophyte communities

      ,
      Botanica Marina
      Walter de Gruyter GmbH

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Marine biodiversity and ecosystem functioning – including seaweed communities – in the territorial waters of the UK and its Overseas Territories are facing unprecedented pressures. Key stressors are changes in ecosystem functioning due to biodiversity loss caused by ocean warming (species replacement and migration, e.g. affecting kelp forests), sea level rise (e.g. loss of habitats including salt marshes), plastic pollution (e.g. entanglement and ingestion), alien species with increasing numbers of alien seaweeds (e.g. outcompeting native species and parasite transmission), overexploitation (e.g. loss of energy supply further up the food web), habitat destruction (e.g. loss of nursery areas for commercially important species) and ocean acidification (e.g. skeletal weakening of ecosystem engineers including coralline algal beds). These stressors are currently affecting biodiversity, and their impact can be projected for the future. All stressors may act alone or in synergy. Marine biodiversity provides crucial goods and services. Climate change and biodiversity loss pose new challenges for legislation. In particular, there are implications of climate change for the designation and management of Marine Protected Areas and natural carbon storage by marine systems to help control the global climate system. The UK currently has legal obligations to protect biodiversity under international and European law.

          Related collections

          Most cited references73

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Impacts of ocean acidification on marine organisms: quantifying sensitivities and interaction with warming

          Ocean acidification represents a threat to marine species worldwide, and forecasting the ecological impacts of acidification is a high priority for science, management, and policy. As research on the topic expands at an exponential rate, a comprehensive understanding of the variability in organisms' responses and corresponding levels of certainty is necessary to forecast the ecological effects. Here, we perform the most comprehensive meta-analysis to date by synthesizing the results of 228 studies examining biological responses to ocean acidification. The results reveal decreased survival, calcification, growth, development and abundance in response to acidification when the broad range of marine organisms is pooled together. However, the magnitude of these responses varies among taxonomic groups, suggesting there is some predictable trait-based variation in sensitivity, despite the investigation of approximately 100 new species in recent research. The results also reveal an enhanced sensitivity of mollusk larvae, but suggest that an enhanced sensitivity of early life history stages is not universal across all taxonomic groups. In addition, the variability in species' responses is enhanced when they are exposed to acidification in multi-species assemblages, suggesting that it is important to consider indirect effects and exercise caution when forecasting abundance patterns from single-species laboratory experiments. Furthermore, the results suggest that other factors, such as nutritional status or source population, could cause substantial variation in organisms' responses. Last, the results highlight a trend towards enhanced sensitivity to acidification when taxa are concurrently exposed to elevated seawater temperature.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            Projecting global marine biodiversity impacts under climate change scenarios

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Collapse and conservation of shark populations in the Northwest Atlantic.

              Overexploitation threatens the future of many large vertebrates. In the ocean, tunas and sea turtles are current conservation concerns because of this intense pressure. The status of most shark species, in contrast, remains uncertain. Using the largest data set in the Northwest Atlantic, we show rapid large declines in large coastal and oceanic shark populations. Scalloped hammerhead, white, and thresher sharks are each estimated to have declined by over 75% in the past 15 years. Closed-area models highlight priority areas for shark conservation, and the need to consider effort reallocation and site selection if marine reserves are to benefit multiple threatened species.
                Bookmark

                Author and article information

                Journal
                Botanica Marina
                Walter de Gruyter GmbH
                1437-4323
                0006-8055
                December 19 2018
                December 19 2018
                : 61
                : 6
                : 521-535
                Article
                10.1515/bot-2018-0076
                f3042769-afd1-4260-9b11-80149cb51722
                © 2018

                http://creativecommons.org/licenses/by/4.0

                History

                Comments

                Comment on this article