+1 Recommend
1 collections
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Validation of 3D EM Reconstructions: The Phantom in the Noise


      Read this article at

          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.


          Validation is a necessity to trust the structures solved by electron microscopy by single particle techniques. The impressive achievements in single particle reconstruction fuel its expansion beyond a small community of image processing experts. This poses the risk of inappropriate data processing with dubious results. Nowhere is it more clearly illustrated than in the recovery of a reference density map from pure noise aligned to that map—a phantom in the noise. Appropriate use of existing validating methods such as resolution-limited alignment and the processing of independent data sets (“gold standard”) avoid this pitfall. However, these methods can be undermined by biases introduced in various subtle ways. How can we test that a map is a coherent structure present in the images selected from the micrographs? In stead of viewing the phantom emerging from noise as a cautionary tale, it should be used as a defining baseline. Any map is always recoverable from noise images, provided a sufficient number of images are aligned and used in reconstruction. However, with smaller numbers of images, the expected coherence in the real particle images should yield better reconstructions than equivalent numbers of noise or background images, even without masking or imposing resolution limits as potential biases. The validation test proposed is therefore a simple alignment of a limited number of micrograph and noise images against the final reconstruction as reference, demonstrating that the micrograph images yield a better reconstruction. I examine synthetic cases to relate the resolution of a reconstruction to the alignment error as a function of the signal-to-noise ratio. I also administered the test to real cases of publicly available data. Adopting such a test can aid the microscopist in assessing the usefulness of the micrographs taken before committing to lengthy processing with questionable outcomes.

          Most cited references64

          • Record: found
          • Abstract: not found
          • Article: not found

          Biochemistry. The resolution revolution.

            • Record: found
            • Abstract: found
            • Article: not found

            Avoiding the pitfalls of single particle cryo-electron microscopy: Einstein from noise.

            Single particle cryo-electron microscopy is currently poised to produce high-resolution structures of many biological assemblies, but several pitfalls can trap the unwary. This critique highlights one problem that is particularly relevant when smaller structures are being studied. It is known as "Einstein from noise," in which the experimenter honestly believes they have recorded images of their particles, whereas in reality, most if not all of their data consist of pure noise. Selection of particles using cross-correlation methods can then lead to 3D maps that resemble the model used in the initial selection and provide the illusion of progress. Suggestions are given about how to circumvent the problem.
              • Record: found
              • Abstract: found
              • Article: not found

              A syringe-like injection mechanism in Photorhabdus luminescens toxins.

              Photorhabdus luminescens is an insect pathogenic bacterium that is symbiotic with entomopathogenic nematodes. On invasion of insect larvae, P. luminescens is released from the nematodes and kills the insect through the action of a variety of virulence factors including large tripartite ABC-type toxin complexes (Tcs). Tcs are typically composed of TcA, TcB and TcC proteins and are biologically active only when complete. Functioning as ADP-ribosyltransferases, TcC proteins were identified as the actual functional components that induce actin-clustering, defects in phagocytosis and cell death. However, little is known about the translocation of TcC into the cell by the TcA and TcB components. Here we show that TcA in P. luminescens (TcdA1) forms a transmembrane pore and report its structure in the prepore and pore state determined by cryoelectron microscopy. We find that the TcdA1 prepore assembles as a pentamer forming an α-helical, vuvuzela-shaped channel less than 1.5 nanometres in diameter surrounded by a large outer shell. Membrane insertion is triggered not only at low pH as expected, but also at high pH, explaining Tc action directly through the midgut of insects. Comparisons with structures of the TcdA1 pore inserted into a membrane and in complex with TcdB2 and TccC3 reveal large conformational changes during membrane insertion, suggesting a novel syringe-like mechanism of protein translocation. Our results demonstrate how ABC-type toxin complexes bridge a membrane to insert their lethal components into the cytoplasm of the host cell. We believe that the proposed mechanism is characteristic of the whole ABC-type toxin family. This explanation of toxin translocation is a step towards understanding the host-pathogen interaction and the complex life cycle of P. luminescens and other pathogens, including human pathogenic bacteria, and serves as a strong foundation for the development of biopesticides.

                Author and article information

                AIMS Biophysics
                AIMS Biophysics
                AIMS Press
                23 March 2015
                : 2
                : 1
                : 21-35
                National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, 50 South Dr, Bethesda, MD 20892, USA
                Author notes
                JBernardHeymann,Email: bernard_heymann@ 123456nih.gov ; Tel: +1-301-451-8241
                : 12 February 2015
                : 18 March 2015
                Research article

                electron microscopy,3D image processing,single particle analysis,gaussian noise,signal-to-noise ratio,structural biology,resolution


                Comment on this article