89
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Spliced Leader Trapping Reveals Widespread Alternative Splicing Patterns in the Highly Dynamic Transcriptome of Trypanosoma brucei

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Trans-splicing of leader sequences onto the 5′ends of mRNAs is a widespread phenomenon in protozoa, nematodes and some chordates. Using parallel sequencing we have developed a method to simultaneously map 5′splice sites and analyze the corresponding gene expression profile, that we term spliced leader trapping (SLT). The method can be applied to any organism with a sequenced genome and trans-splicing of a conserved leader sequence. We analyzed the expression profiles and splicing patterns of bloodstream and insect forms of the parasite Trypanosoma brucei. We detected the 5′ splice sites of 85% of the annotated protein-coding genes and, contrary to previous reports, found up to 40% of transcripts to be differentially expressed. Furthermore, we discovered more than 2500 alternative splicing events, many of which appear to be stage-regulated. Based on our findings we hypothesize that alternatively spliced transcripts present a new means of regulating gene expression and could potentially contribute to protein diversity in the parasite. The entire dataset can be accessed online at TriTrypDB or through: http://splicer.unibe.ch/.

          Author Summary

          Some organisms like the human and animal parasite Trypanosoma brucei add a leader sequence to their mRNAs through a reaction called trans-splicing. Until now the splice sites for most mRNAs were unknown in T. brucei. Using high throughput sequencing we have developed a method to identify the splice sites and at the same time measure the abundance of the corresponding mRNAs. Analyzing three different life cycle stages of the parasite we identified the vast majority of splice sites in the organism and, to our great surprise, uncovered more than 2500 alternative splicing events, many of which appeared to be specific for one of the life cycle stages. Alternative splicing is a result of the addition of the leader sequence to different positions on the mRNA, leading to mixed mRNA populations that can encode for proteins with varying properties. One of the most obvious changes caused by alternative splicing is the gain or loss of targeting signals, leading to differential localization of the corresponding proteins. Based on our findings we hypothesize that alternative splicing is a major mechanism to regulate gene expression in T. brucei and could contribute to protein diversity in the parasite.

          Related collections

          Most cited references48

          • Record: found
          • Abstract: found
          • Article: not found

          The Bioperl toolkit: Perl modules for the life sciences.

          The Bioperl project is an international open-source collaboration of biologists, bioinformaticians, and computer scientists that has evolved over the past 7 yr into the most comprehensive library of Perl modules available for managing and manipulating life-science information. Bioperl provides an easy-to-use, stable, and consistent programming interface for bioinformatics application programmers. The Bioperl modules have been successfully and repeatedly used to reduce otherwise complex tasks to only a few lines of code. The Bioperl object model has been proven to be flexible enough to support enterprise-level applications such as EnsEMBL, while maintaining an easy learning curve for novice Perl programmers. Bioperl is capable of executing analyses and processing results from programs such as BLAST, ClustalW, or the EMBOSS suite. Interoperation with modules written in Python and Java is supported through the evolving BioCORBA bridge. Bioperl provides access to data stores such as GenBank and SwissProt via a flexible series of sequence input/output modules, and to the emerging common sequence data storage format of the Open Bioinformatics Database Access project. This study describes the overall architecture of the toolkit, the problem domains that it addresses, and gives specific examples of how the toolkit can be used to solve common life-sciences problems. We conclude with a discussion of how the open-source nature of the project has contributed to the development effort.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The genome of the African trypanosome Trypanosoma brucei.

            African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The generic genome browser: a building block for a model organism system database.

              The Generic Model Organism System Database Project (GMOD) seeks to develop reusable software components for model organism system databases. In this paper we describe the Generic Genome Browser (GBrowse), a Web-based application for displaying genomic annotations and other features. For the end user, features of the browser include the ability to scroll and zoom through arbitrary regions of a genome, to enter a region of the genome by searching for a landmark or performing a full text search of all features, and the ability to enable and disable tracks and change their relative order and appearance. The user can upload private annotations to view them in the context of the public ones, and publish those annotations to the community. For the data provider, features of the browser software include reliance on readily available open source components, simple installation, flexible configuration, and easy integration with other components of a model organism system Web site. GBrowse is freely available under an open source license. The software, its documentation, and support are available at http://www.gmod.org.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS Pathog
                plos
                plospath
                PLoS Pathogens
                Public Library of Science (San Francisco, USA )
                1553-7366
                1553-7374
                August 2010
                August 2010
                5 August 2010
                : 6
                : 8
                : e1001037
                Affiliations
                [1 ]Institute of Cell Biology, University of Bern, Bern, Switzerland
                [2 ]Fasteris, Genome Analyzer Service FASTERIS SA, Geneva, Switzerland
                Seattle Biomedical Research Institute, United States of America
                Author notes

                Conceived and designed the experiments: IR TO. Performed the experiments: DN KG MO TO. Analyzed the data: DN KG LB IR TO. Contributed reagents/materials/analysis tools: JM LF TO. Wrote the paper: IR TO.

                Article
                09-PLPA-RA-2310R3
                10.1371/journal.ppat.1001037
                2916883
                20700444
                f319f60d-514a-4a35-bac2-56b8608a0470
                Nilsson et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
                History
                : 21 December 2009
                : 12 July 2010
                Page count
                Pages: 13
                Categories
                Research Article
                Computational Biology/Alternative Splicing
                Infectious Diseases/Protozoal Infections
                Microbiology/Parasitology
                Molecular Biology/Bioinformatics
                Molecular Biology/mRNA Stability
                Molecular Biology/RNA Splicing

                Infectious disease & Microbiology
                Infectious disease & Microbiology

                Comments

                Comment on this article