5
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Automatic Fabric Defect Detection Using Cascaded Mixed Feature Pyramid with Guided Localization

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Generic object detection algorithms for natural images have been proven to have excellent performance. In this paper, fabric defect detection on optical image datasets is systematically studied. In contrast to generic datasets, defect images are multi-scale, noise-filled, and blurred. Back-light intensity would also be sensitive for visual perception. Large-scale fabric defect datasets are collected, selected, and employed to fulfill the requirements of detection in industrial practice in order to address these imbalanced issues. An improved two-stage defect detector is constructed for achieving better generalization. Stacked feature pyramid networks are set up to aggregate cross-scale defect patterns on interpolating mixed depth-wise block in stage one. By sharing feature maps, center-ness and shape branches merges cascaded modules with deformable convolution to filter and refine the proposed guided anchors. After balanced sampling, the proposals are down-sampled by position-sensitive pooling for region of interest, in order to characterize interactions among fabric defect images in stage two. The experiments show that the end-to-end architecture improves the occluded defect performance of region-based object detectors as compared with the current detectors.

          Related collections

          Most cited references39

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

          Training Deep Neural Networks is complicated by the fact that the distribution of each layer's inputs changes during training, as the parameters of the previous layers change. This slows down the training by requiring lower learning rates and careful parameter initialization, and makes it notoriously hard to train models with saturating nonlinearities. We refer to this phenomenon as internal covariate shift, and address the problem by normalizing layer inputs. Our method draws its strength from making normalization a part of the model architecture and performing the normalization for each training mini-batch. Batch Normalization allows us to use much higher learning rates and be less careful about initialization. It also acts as a regularizer, in some cases eliminating the need for Dropout. Applied to a state-of-the-art image classification model, Batch Normalization achieves the same accuracy with 14 times fewer training steps, and beats the original model by a significant margin. Using an ensemble of batch-normalized networks, we improve upon the best published result on ImageNet classification: reaching 4.9% top-5 validation error (and 4.8% test error), exceeding the accuracy of human raters.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            State-of-the-art in visual attention modeling.

            Modeling visual attention--particularly stimulus-driven, saliency-based attention--has been a very active research area over the past 25 years. Many different models of attention are now available which, aside from lending theoretical contributions to other fields, have demonstrated successful applications in computer vision, mobile robotics, and cognitive systems. Here we review, from a computational perspective, the basic concepts of attention implemented in these models. We present a taxonomy of nearly 65 models, which provides a critical comparison of approaches, their capabilities, and shortcomings. In particular, 13 criteria derived from behavioral and computational studies are formulated for qualitative comparison of attention models. Furthermore, we address several challenging issues with models, including biological plausibility of the computations, correlation with eye movement datasets, bottom-up and top-down dissociation, and constructing meaningful performance measures. Finally, we highlight current research trends in attention modeling and provide insights for future.
              Bookmark
              • Record: found
              • Abstract: not found
              • Conference Proceedings: not found

              Mask R-CNN

                Bookmark

                Author and article information

                Journal
                Sensors (Basel)
                Sensors (Basel)
                sensors
                Sensors (Basel, Switzerland)
                MDPI
                1424-8220
                06 February 2020
                February 2020
                : 20
                : 3
                : 871
                Affiliations
                State Key Laboratory of Precision Measuring Technology & Instruments, Centre of Micro/Nano Manufacturing Technology—MNMT, Tianjin University, Tianjin 300072, China
                Author notes
                [* ]Correspondence: fzfang@ 123456tju.edu.cn
                Author information
                https://orcid.org/0000-0002-8716-5988
                Article
                sensors-20-00871
                10.3390/s20030871
                7039386
                32041348
                f31cdbc1-5fc2-4791-b2a9-04c972ad5ceb
                © 2020 by the authors.

                Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license ( http://creativecommons.org/licenses/by/4.0/).

                History
                : 17 January 2020
                : 04 February 2020
                Categories
                Article

                Biomedical engineering
                fabric defect,object detection,mixed kernels,cross-scale,cascaded center-ness,deformable localization

                Comments

                Comment on this article