Blog
About

44
views
0
recommends
+1 Recommend
1 collections
    1
    shares
      • Record: found
      • Abstract: found
      • Article: found

      Eukaryotic DNA Replication Fork

      1 , 2

      Annual Review of Biochemistry

      Annual Reviews

      Read this article at

      ScienceOpenPublisherPMC
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This review focuses on the biogenesis and composition of the eukaryotic DNA replication fork, with an emphasis on the enzymes that synthesize DNA and repair discontinuities on the lagging strand of the replication fork. Physical and genetic methodologies aimed at understanding these processes are discussed. The preponderance of evidence supports a model in which DNA polymerase ε (Pol ε) carries out the bulk of leading strand DNA synthesis at an undisturbed replication fork. DNA polymerases α and δ carry out the initiation of Okazaki fragment synthesis and its elongation and maturation, respectively. This review also discusses alternative proposals, including cellular processes during which alternative forks may be utilized, and new biochemical studies with purified proteins that are aimed at reconstituting leading and lagging strand DNA synthesis separately and as an integrated replication fork.

          Related collections

          Most cited references 133

          • Record: found
          • Abstract: found
          • Article: not found

          Replication dynamics of the yeast genome.

          Oligonucleotide microarrays were used to map the detailed topography of chromosome replication in the budding yeast Saccharomyces cerevisiae. The times of replication of thousands of sites across the genome were determined by hybridizing replicated and unreplicated DNAs, isolated at different times in S phase, to the microarrays. Origin activations take place continuously throughout S phase but with most firings near mid-S phase. Rates of replication fork movement vary greatly from region to region in the genome. The two ends of each of the 16 chromosomes are highly correlated in their times of replication. This microarray approach is readily applicable to other organisms, including humans.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Isolation of the Cdc45/Mcm2-7/GINS (CMG) complex, a candidate for the eukaryotic DNA replication fork helicase.

            The protein Cdc45 plays a critical but poorly understood role in the initiation and elongation stages of eukaryotic DNA replication. To study Cdc45's function in DNA replication, we purified Cdc45 protein from Drosophila embryo extracts by a combination of traditional and immunoaffinity chromatography steps and found that the protein exists in a stable, high-molecular-weight complex with the Mcm2-7 hexamer and the GINS tetramer. The purified Cdc45/Mcm2-7/GINS complex is associated with an active ATP-dependent DNA helicase function. RNA interference knock-down experiments targeting the GINS and Cdc45 components establish that the proteins are required for the S phase transition in Drosophila cells. The data suggest that this complex forms the core helicase machinery for eukaryotic DNA replication.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Yeast DNA polymerase epsilon participates in leading-strand DNA replication.

              Multiple DNA polymerases participate in replicating the leading and lagging strands of the eukaryotic nuclear genome. Although 50 years have passed since the first DNA polymerase was discovered, the identity of the major polymerase used for leading-strand replication is uncertain. We constructed a derivative of yeast DNA polymerase epsilon that retains high replication activity but has strongly reduced replication fidelity, particularly for thymine-deoxythymidine 5'-monophosphate (T-dTMP) but not adenine-deoxyadenosine 5'-monophosphate (A-dAMP) mismatches. Yeast strains with this DNA polymerase epsilon allele have elevated rates of T to A substitution mutations. The position and rate of these substitutions depend on the orientation of the mutational reporter and its location relative to origins of DNA replication and reveal a pattern indicating that DNA polymerase epsilon participates in leading-strand DNA replication.
                Bookmark

                Author and article information

                Journal
                Annual Review of Biochemistry
                Annu. Rev. Biochem.
                Annual Reviews
                0066-4154
                1545-4509
                June 20 2017
                June 20 2017
                : 86
                : 1
                : 417-438
                Affiliations
                [1 ]Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri 63110;
                [2 ]Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709;
                Article
                10.1146/annurev-biochem-061516-044709
                5597965
                28301743
                © 2017

                Comments

                Comment on this article