25
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      The Effect of Nitrogen Deposition on Plant Performance and Community Structure: Is It Life Stage Specific?

      research-article
      1 , 2 , * , 1
      PLoS ONE
      Public Library of Science

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nitrogen (N) deposition is a key global change factor that is increasing and affecting the structure and function of many ecosystems. To determine the influence of N deposition on specific systems, however, it is crucial to understand the temporal and spatial patterns of deposition as well as the response to that deposition. Response of the receiving plant communities may depend on the life stage-specific performance of individual species. We focus on the California oak savanna because N deposition to this system is complex—characterized by hotspots on the landscape and seasonal pulses. In a greenhouse experiment, we investigated the relative influence of N deposition on plant performance during early growth, peak biomass, and senescent life stages across different soil types, light, and community compositions. To represent the community we used three grass species—a native, naturalized exotic, and invasive exotic. At early growth and peak biomass stages performance was measured as height, and shoot and root biomass, and at the senescent stage as seed production. Simulated N deposition 1) increased shoot biomass and height of the native and, even more so, the naturalized exotic during early growth, 2) positively affected root biomass in all species during peak biomass, and 3) had no influence on seed production at the senescent stage. Alone, N deposition was not a strong driver of plant performance; however, small differences in performance among species in response to N deposition could affect community composition in future years. In particular, if there is a pulse of N deposition during the early growth stage, the naturalized exotic may have a competitive advantage that could result in its spread. Including spatial and temporal heterogeneity in a complex, manipulative experiment provides a clearer picture of not only where N management efforts should be targeted on the landscape, but also when.

          Related collections

          Most cited references8

          • Record: found
          • Abstract: found
          • Article: not found

          Water pulses and biogeochemical cycles in arid and semiarid ecosystems.

          The episodic nature of water availability in arid and semiarid ecosystems has significant consequences on belowground carbon and nutrient cycling. Pulsed water events directly control belowground processes through soil wet-dry cycles. Rapid soil microbial response to incident moisture availability often results in almost instantaneous C and N mineralization, followed by shifts in C/N of microbially available substrate, and an offset in the balance between nutrient immobilization and mineralization. Nitrogen inputs from biological soil crusts are also highly sensitive to pulsed rain events, and nitrogen losses, particularly gaseous losses due to denitrification and nitrate leaching, are tightly linked to pulses of water availability. The magnitude of the effect of water pulses on carbon and nutrient pools, however, depends on the distribution of resource availability and soil organisms, both of which are strongly affected by the spatial and temporal heterogeneity of vegetation cover, topographic position and soil texture. The 'inverse texture hypothesis' for net primary production in water-limited ecosystems suggests that coarse-textured soils have higher NPP than fine-textured soils in very arid zones due to reduced evaporative losses, while NPP is greater in fine-textured soils in higher rainfall ecosystems due to increased water-holding capacity. With respect to belowground processes, fine-textured soils tend to have higher water-holding capacity and labile C and N pools than coarse-textured soils, and often show a much greater flush of N mineralization. The result of the interaction of texture and pulsed rainfall events suggests a corollary hypothesis for nutrient turnover in arid and semiarid ecosystems with a linear increase of N mineralization in coarse-textured soils, but a saturating response for fine-textured soils due to the importance of soil C and N pools. Seasonal distribution of water pulses can lead to the accumulation of mineral N in the dry season, decoupling resource supply and microbial and plant demand, and resulting in increased losses via other pathways and reduction in overall soil nutrient pools. The asynchrony of resource availability, particularly nitrogen versus water due to pulsed water events, may be central to understanding the consequences for ecosystem nutrient retention and long-term effects on carbon and nutrient pools. Finally, global change effects due to changes in the nature and size of pulsed water events and increased asynchrony of water availability and growing season will likely have impacts on biogeochemical cycling in water-limited ecosystems.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Global change and species interactions in terrestrial ecosystems.

            The main drivers of global environmental change (CO2 enrichment, nitrogen deposition, climate, biotic invasions and land use) cause extinctions and alter species distributions, and recent evidence shows that they exert pervasive impacts on various antagonistic and mutualistic interactions among species. In this review, we synthesize data from 688 published studies to show that these drivers often alter competitive interactions among plants and animals, exert multitrophic effects on the decomposer food web, increase intensity of pathogen infection, weaken mutualisms involving plants, and enhance herbivory while having variable effects on predation. A recurrent finding is that there is substantial variability among studies in both the magnitude and direction of effects of any given GEC driver on any given type of biotic interaction. Further, we show that higher order effects among multiple drivers acting simultaneously create challenges in predicting future responses to global environmental change, and that extrapolating these complex impacts across entire networks of species interactions yields unanticipated effects on ecosystems. Finally, we conclude that in order to reliably predict the effects of GEC on community and ecosystem processes, the greatest single challenge will be to determine how biotic and abiotic context alters the direction and magnitude of GEC effects on biotic interactions.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Nitrogen critical loads and management alternatives for N-impacted ecosystems in California.

              Empirical critical loads for N deposition effects and maps showing areas projected to be in exceedance of the critical load (CL) are given for seven major vegetation types in California. Thirty-five percent of the land area for these vegetation types (99,639 km(2)) is estimated to be in excess of the N CL. Low CL values (3-8 kg N ha(-1) yr(-1)) were determined for mixed conifer forests, chaparral and oak woodlands due to highly N-sensitive biota (lichens) and N-poor or low biomass vegetation in the case of coastal sage scrub (CSS), annual grassland, and desert scrub vegetation. At these N deposition critical loads the latter three ecosystem types are at risk of major vegetation type change because N enrichment favors invasion by exotic annual grasses. Fifty-four and forty-four percent of the area for CSS and grasslands are in exceedance of the CL for invasive grasses, while 53 and 41% of the chaparral and oak woodland areas are in exceedance of the CL for impacts on epiphytic lichen communities. Approximately 30% of the desert (based on invasive grasses and increased fire risk) and mixed conifer forest (based on lichen community changes) areas are in exceedance of the CL. These ecosystems are generally located further from emissions sources than many grasslands or CSS areas. By comparison, only 3-15% of the forested and chaparral land areas are estimated to be in exceedance of the NO(3)(-) leaching CL. The CL for incipient N saturation in mixed conifer forest catchments was 17 kg N ha(-1) yr(-1). In 10% of the CL exceedance areas for all seven vegetation types combined, the CL is exceeded by at least 10 kg N ha(-1) yr(-1), and in 27% of the exceedance areas the CL is exceeded by at least 5 kg N ha(-1) yr(-1). Management strategies for mitigating the effects of excess N are based on reducing N emissions and reducing site N capital through approaches such as biomass removal and prescribed fire or control of invasive grasses by mowing, selective herbicides, weeding or domestic animal grazing. Ultimately, decreases in N deposition are needed for long-term ecosystem protection and sustainability, and this is the only strategy that will protect epiphytic lichen communities. Published by Elsevier Ltd.
                Bookmark

                Author and article information

                Contributors
                Role: Editor
                Journal
                PLoS One
                PLoS ONE
                plos
                plosone
                PLoS ONE
                Public Library of Science (San Francisco, CA USA )
                1932-6203
                2 June 2016
                2016
                : 11
                : 6
                : e0156685
                Affiliations
                [1 ]University of California Davis, Department of Plant Sciences, Davis, California, United States of America
                [2 ]La Salle High School, Yakima, Washington, United States of America
                University of California Davis, UNITED STATES
                Author notes

                Competing Interests: The authors have declared that no competing interests exist.

                Conceived and designed the experiments: EMT MLC. Performed the experiments: EMT. Analyzed the data: EMT. Contributed reagents/materials/analysis tools: MLC. Wrote the paper: EMT MLC.

                Article
                PONE-D-15-32065
                10.1371/journal.pone.0156685
                4890792
                27253718
                f32c5740-250f-4c6f-8863-2208b2b1cd1b
                © 2016 Tulloss, Cadenasso

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 21 July 2015
                : 18 May 2016
                Page count
                Figures: 5, Tables: 1, Pages: 18
                Funding
                Funded by: College of Agriculture and Environmental Sciences, University of California Davis
                Award Recipient :
                This work was supported by Jastro Shields Scholarship from the College of Agriculture and Environmental Sciences, University of California Davis (EMT); Department of Plant Sciences, University of California Davis (MLC). The authors received no specific funding for this work.
                Categories
                Research Article
                Ecology and Environmental Sciences
                Species Colonization
                Invasive Species
                Biology and Life Sciences
                Ecology
                Plant Ecology
                Plant Communities
                Ecology and Environmental Sciences
                Ecology
                Plant Ecology
                Plant Communities
                Biology and Life Sciences
                Plant Science
                Plant Ecology
                Plant Communities
                Biology and Life Sciences
                Ecology
                Plant Ecology
                Plant Communities
                Grasslands
                Ecology and Environmental Sciences
                Ecology
                Plant Ecology
                Plant Communities
                Grasslands
                Biology and Life Sciences
                Plant Science
                Plant Ecology
                Plant Communities
                Grasslands
                Ecology and Environmental Sciences
                Terrestrial Environments
                Grasslands
                Biology and Life Sciences
                Agriculture
                Agrochemicals
                Fertilizers
                Biology and Life Sciences
                Plant Science
                Plant Anatomy
                Seeds
                Biology and Life Sciences
                Organisms
                Plants
                Grasses
                Biology and Life Sciences
                Ecology
                Ecological Metrics
                Biomass (Ecology)
                Ecology and Environmental Sciences
                Ecology
                Ecological Metrics
                Biomass (Ecology)
                Biology and Life Sciences
                Organisms
                Plants
                Trees
                Oaks
                Custom metadata
                All relevant data are within the paper in the Supporting Information files.

                Uncategorized
                Uncategorized

                Comments

                Comment on this article