48
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Evolution of the patellar sesamoid bone in mammals

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          The patella is a sesamoid bone located in the major extensor tendon of the knee joint, in the hindlimb of many tetrapods. Although numerous aspects of knee morphology are ancient and conserved among most tetrapods, the evolutionary occurrence of an ossified patella is highly variable. Among extant (crown clade) groups it is found in most birds, most lizards, the monotreme mammals and almost all placental mammals, but it is absent in most marsupial mammals as well as many reptiles. Here, we integrate data from the literature and first-hand studies of fossil and recent skeletal remains to reconstruct the evolution of the mammalian patella. We infer that bony patellae most likely evolved between four and six times in crown group Mammalia: in monotremes, in the extinct multituberculates, in one or more stem-mammal genera outside of therian or eutherian mammals and up to three times in therian mammals. Furthermore, an ossified patella was lost several times in mammals, not including those with absent hindlimbs: once or more in marsupials (with some re-acquisition) and at least once in bats. Our inferences about patellar evolution in mammals are reciprocally informed by the existence of several human genetic conditions in which the patella is either absent or severely reduced. Clearly, development of the patella is under close genomic control, although its responsiveness to its mechanical environment is also important (and perhaps variable among taxa). Where a bony patella is present it plays an important role in hindlimb function, especially in resisting gravity by providing an enhanced lever system for the knee joint. Yet the evolutionary origins, persistence and modifications of a patella in diverse groups with widely varying habits and habitats—from digging to running to aquatic, small or large body sizes, bipeds or quadrupeds—remain complex and perplexing, impeding a conclusive synthesis of form, function, development and genetics across mammalian evolution. This meta-analysis takes an initial step toward such a synthesis by collating available data and elucidating areas of promising future inquiry.

          Related collections

          Most cited references243

          • Record: found
          • Abstract: found
          • Article: not found

          TimeTree: a public knowledge-base of divergence times among organisms.

          Biologists and other scientists routinely need to know times of divergence between species and to construct phylogenies calibrated to time (timetrees). Published studies reporting time estimates from molecular data have been increasing rapidly, but the data have been largely inaccessible to the greater community of scientists because of their complexity. TimeTree brings these data together in a consistent format and uses a hierarchical structure, corresponding to the tree of life, to maximize their utility. Results are presented and summarized, allowing users to quickly determine the range and robustness of time estimates and the degree of consensus from the published literature. TimeTree is available at http://www.timetree.net
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            The placental mammal ancestor and the post-K-Pg radiation of placentals.

            To discover interordinal relationships of living and fossil placental mammals and the time of origin of placentals relative to the Cretaceous-Paleogene (K-Pg) boundary, we scored 4541 phenomic characters de novo for 86 fossil and living species. Combining these data with molecular sequences, we obtained a phylogenetic tree that, when calibrated with fossils, shows that crown clade Placentalia and placental orders originated after the K-Pg boundary. Many nodes discovered using molecular data are upheld, but phenomic signals overturn molecular signals to show Sundatheria (Dermoptera + Scandentia) as the sister taxon of Primates, a close link between Proboscidea (elephants) and Sirenia (sea cows), and the monophyly of echolocating Chiroptera (bats). Our tree suggests that Placentalia first split into Xenarthra and Epitheria; extinct New World species are the oldest members of Afrotheria.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Stochastic mapping of morphological characters.

              Many questions in evolutionary biology are best addressed by comparing traits in different species. Often such studies involve mapping characters on phylogenetic trees. Mapping characters on trees allows the nature, number, and timing of the transformations to be identified. The parsimony method is the only method available for mapping morphological characters on phylogenies. Although the parsimony method often makes reasonable reconstructions of the history of a character, it has a number of limitations. These limitations include the inability to consider more than a single change along a branch on a tree and the uncoupling of evolutionary time from amount of character change. We extended a method described by Nielsen (2002, Syst. Biol. 51:729-739) to the mapping of morphological characters under continuous-time Markov models and demonstrate here the utility of the method for mapping characters on trees and for identifying character correlation.
                Bookmark

                Author and article information

                Contributors
                Journal
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ
                PeerJ Inc. (San Francisco, USA )
                2167-8359
                21 March 2017
                2017
                : 5
                : e3103
                Affiliations
                [1 ]Department of Medicine, University of Montreal , Montreal, QC, Canada
                [2 ]Centre de Recherche du CHU Ste-Justine , Montreal, QC, Canada
                [3 ]Department of Comparative Biomedical Sciences, Structure and Motion Laboratory, The Royal Veterinary College , London Hertfordshire, UK
                Author information
                http://orcid.org/0000-0002-6767-7038
                Article
                3103
                10.7717/peerj.3103
                5363259
                28344905
                f33ea50b-3c51-47c3-b882-59082bc5c8f9
                © 2017 Samuels et al.

                This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.

                History
                : 11 November 2016
                : 17 February 2017
                Funding
                Funded by: Centre de Recherche du CHU Ste-Justine
                Funded by: Senior Research Fellowship from the Royal Society and Leverhulme Trust in 2012, and grant number RPG-2013-108 from the Leverhulme Trust
                Funded by: PhD studentship from the Royal Veterinary College
                Mark E. Samuels was supported by the Centre de Recherche du CHU Ste-Justine. John R. Hutchinson was supported by a Senior Research Fellowship from the Royal Society and Leverhulme Trust in 2012, and grant number RPG-2013-108 from the Leverhulme Trust. Sophie Regnault was supported by a PhD studentship from the Royal Veterinary College. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.
                Categories
                Evolutionary Studies
                Palaeontology
                Zoology
                Anatomy and Physiology

                knee,locomotion,genomics,paleontology,osteology,theria,phylogeny,pathology,limb,development

                Comments

                Comment on this article