19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: not found

      Sound-colour synaesthesia: to what extent does it use cross-modal mechanisms common to us all?

      Cortex; a Journal Devoted to the Study of the Nervous System and Behavior
      Adult, Association, Attention, Color Perception, Female, Humans, Imagination, Male, Middle Aged, Music, Pitch Discrimination, Pitch Perception, Psychoacoustics, Sound Spectrography

      Read this article at

      ScienceOpenPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          This study examines a group of synaesthetes who report colour sensations in response to music and other sounds. Experiment 1 shows that synaesthetes choose more precise colours and are more internally consistent in their choice of colours given a set of sounds of varying pitch, timbre and composition (single notes or dyads) relative to a group of controls. In spite of this difference, both controls and synaesthetes appear to use the same heuristics for matching between auditory and visual domains (e.g., pitch to lightness). We take this as evidence that synaesthesia may recruit some of the mechanisms used in normal cross-modal perception. Experiment 2 establishes that synaesthetic colours are automatically elicited insofar as they give rise to cross-modal Stroop interference. Experiment 3 uses a variant of the cross-modal Posner paradigm in which detection of a lateralised target is enhanced when combined with a non-informative but synaesthetically congruent sound-colour pairing. This suggests that synaesthesia uses the same (or an analogous) mechanism of exogenous cross-modal orienting as normal perception. Overall, the results support the conclusion that this form of synaesthesia recruits some of the same mechanisms used in normal cross-modal perception rather than using direct, privileged pathways between unimodal auditory and unimodal visual areas that are absent in most other adults.

          Related collections

          Author and article information

          Comments

          Comment on this article