16
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Transport of hydrogen isotopes through interlayer spacing in van der Waals crystals

      Preprint

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Atoms start behaving as waves rather than classical particles if confined in spaces commensurate with their de Broglie wavelength. At room temperature this length is only about one angstrom even for the lightest atom, hydrogen. This restricts quantum-confinement phenomena for atomic species to the realm of very low temperatures. Here we show that van der Waals gaps between atomic planes of layered crystals provide angstrom-size channels that make quantum confinement of protons apparent even at room temperature. Our transport measurements show that thermal protons experience a notably higher barrier than deuterons when entering van der Waals gaps in hexagonal boron nitride and molybdenum disulfide. This is attributed to the difference in de Broglie wavelength of the isotopes. Once inside the crystals, transport of both isotopes can be described by classical diffusion, albeit with unexpectedly fast rates, comparable to that of protons in water. The demonstrated angstrom-size channels can be exploited for further studies of atomistic quantum confinement and, if the technology can be scaled up, for sieving hydrogen isotopes.

          Related collections

          Most cited references19

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Atom Interferometers

          Interference with atomic and molecular matter waves is a rich branch of atomic physics and quantum optics. It started with atom diffraction from crystal surfaces and the separated oscillatory fields technique used in atomic clocks. Atom interferometry is now reaching maturity as a powerful art with many applications in modern science. In this review we first describe the basic tools for coherent atom optics including diffraction by nanostructures and laser light, three-grating interferometers, and double wells on AtomChips. Then we review scientific advances in a broad range of fields that have resulted from the application of atom interferometers. These are grouped in three categories: (1) fundamental quantum science, (2) precision metrology and (3) atomic and molecular physics. Although some experiments with Bose Einstein condensates are included, the focus of the review is on linear matter wave optics, i.e. phenomena where each single atom interferes with itself.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices

            By stacking various two-dimensional (2D) atomic crystals [1] on top of each other, it is possible to create multilayer heterostructures and devices with designed electronic properties [2-5]. However, various adsorbates become trapped between layers during their assembly, and this not only affects the resulting quality but also prevents the formation of a true artificial layered crystal upheld by van der Waals interaction, creating instead a laminate glued together by contamination. Transmission electron microscopy (TEM) has shown that graphene and boron nitride monolayers, the two best characterized 2D crystals, are densely covered with hydrocarbons (even after thermal annealing in high vacuum) and exhibit only small clean patches suitable for atomic resolution imaging [6-10]. This observation seems detrimental for any realistic prospect of creating van der Waals materials and heterostructures with atomically sharp interfaces. Here we employ cross sectional TEM to take a side view of several graphene-boron nitride heterostructures. We find that the trapped hydrocarbons segregate into isolated pockets, leaving the interfaces atomically clean. Moreover, we observe a clear correlation between interface roughness and the electronic quality of encapsulated graphene. This work proves the concept of heterostructures assembled with atomic layer precision and provides their first TEM images.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Graphene nanostructures as tunable storage media for molecular hydrogen.

              Many methods have been proposed for efficient storage of molecular hydrogen for fuel cell applications. However, despite intense research efforts, the twin U.S. Department of Energy goals of 6.5% mass ratio and 62 kg/m3 volume density has not been achieved either experimentally or via theoretical simulations on reversible model systems. Carbon-based materials, such as carbon nanotubes, have always been regarded as the most attractive physisorption substrates for the storage of hydrogen. Theoretical studies on various model graphitic systems, however, failed to reach the elusive goal. Here, we show that insufficiently accurate carbon-H2 interaction potentials, together with the neglect and incomplete treatment of the quantum effects in previous theoretical investigations, led to misleading conclusions for the absorption capacity. A proper account of the contribution of quantum effects to the free energy and the equilibrium constant for hydrogen adsorption suggest that the U.S. Department of Energy specification can be approached in a graphite-based physisorption system. The theoretical prediction can be realized by optimizing the structures of nano-graphite platelets (graphene), which are light-weight, cheap, chemically inert, and environmentally benign.
                Bookmark

                Author and article information

                Journal
                09 February 2018
                Article
                1802.03205
                f3691b20-634b-4fd8-afeb-55385f48c9e4

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                cond-mat.mes-hall

                Comments

                Comment on this article