8
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mathematical Modeling of E6-p53 interactions in Cervical Cancer

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background:

          Cervical cancer is the third most common cancer in women throughout the world. The human papillomavirus (HPV) E6 viral protein plays an essential role in proteasomal degradation of the cancer suppressant protein p53. As a result, p53 negative regulation and apoptosis relevant activities are abrogated, facilitating development of cervical cancer.

          Methods:

          A mathematical model of E6-p53 interactions was developed using mathematical laws. In-silico simulations were carried out on CellDesigner and as a test case the small molecule drug RITA was considered for its ability to rescue the functions of tumor suppressor p53 by inhibiting E6 mediated proteasomal degradation.

          Results:

          Using a computational model we scrutinized how p53 responds to RITA, and chemical reactions of this small molecule drug were incorporated to perceive the full effects. The evolved strategy allowed the p53 response and rescue of its tumor suppressor function to be delineated, RITA being found to block p53 interactions with E6 associated proteins.

          Conclusion:

          We could develop a model of E6-p53 interactions with incorporation of actions of the small molecule drug RITA. Suppression of E6 associated proteins by RITA induces accumulation of tumor suppressant p53. Using CellDesigner to encode the model ensured that it can be easily modified and extended as more data become available. This strategy should play an effective role in the development of therapies against cancer.

          Related collections

          Most cited references17

          • Record: found
          • Abstract: found
          • Article: not found

          p53 mutations in human cancers.

          Mutations in the evolutionarily conserved codons of the p53 tumor suppressor gene are common in diverse types of human cancer. The p53 mutational spectrum differs among cancers of the colon, lung, esophagus, breast, liver, brain, reticuloendothelial tissues, and hemopoietic tissues. Analysis of these mutations can provide clues to the etiology of these diverse tumors and to the function of specific regions of p53. Transitions predominate in colon, brain, and lymphoid malignancies, whereas G:C to T:A transversions are the most frequent substitutions observed in cancers of the lung and liver. Mutations at A:T base pairs are seen more frequently in esophageal carcinomas than in other solid tumors. Most transitions in colorectal carcinomas, brain tumors, leukemias, and lymphomas are at CpG dinucleotide mutational hot spots. G to T transversions in lung, breast, and esophageal carcinomas are dispersed among numerous codons. In liver tumors in persons from geographic areas in which both aflatoxin B1 and hepatitis B virus are cancer risk factors, most mutations are at one nucleotide pair of codon 249. These differences may reflect the etiological contributions of both exogenous and endogenous factors to human carcinogenesis.
            Bookmark
            • Record: found
            • Abstract: not found
            • Article: not found

            CellDesigner: a process diagram editor for gene-regulatory and biochemical networks

              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              The role of the E6-p53 interaction in the molecular pathogenesis of HPV.

              Human papillomaviruses (HPVs) are associated with a number of clinical conditions, of which the most serious is cervical carcinoma. The E6 protein of the oncogenic, mucosal-specific HPV types has been shown to complex with p53 and, as a result, target it for rapid proteasome-mediated degradation. As a consequence, p53's growth-arrest and apoptosis-inducing activities are abrogated. Since p53 is frequently wild type in cervical cancers, unlike other cancers in which it is often mutated, the notion has arisen that E6's activity with respect to p53 is equivalent to an inactivating mutation of p53. In addition, several studies have shown that the pathways both upstream and downstream of p53 are intact in cervical cancers; this suggests the potential importance of the E6 - p53 interaction for therapeutic intervention. However, like all viral oncoproteins, E6 is a multifunctional protein and a plethora of other cellular targets has been identified. Indeed, E6's interactions with some of these additional targets appear to be equally important in the pathogenesis of HPV, and may also represent valid targets for therapeutic intervention.
                Bookmark

                Author and article information

                Journal
                Asian Pac J Cancer Prev
                Asian Pac. J. Cancer Prev
                Asian Pacific Journal of Cancer Prevention : APJCP
                West Asia Organization for Cancer Prevention (Iran )
                1513-7368
                2476-762X
                2017
                : 18
                : 4
                : 1057-1061
                Affiliations
                [1 ] Department of Bioinformatics and Biosciences, Islamabad, Pakistan
                [2 ] Department of Electronics Engineering, Capital University of Science and Technology, Islamabad, Pakistan
                [3 ] Department of Electrical Engineering, National University of Computer and Emerging Sciences, Islamabad, Pakistan
                Author notes
                [* ] For Correspondence: haseeb3389@ 123456hotmail.com.

                Faryal Khattak and Muhammad Haseeb have equal contribution in this study.

                Article
                APJCP-18-1057
                10.22034/APJCP.2017.18.4.1057
                5494216
                28547941
                f36ea423-06e4-4e7d-a10a-18ec9e0b8ff5
                Copyright: © Asian Pacific Journal of Cancer Prevention

                This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License

                History
                Categories
                Research Article

                cervical cancer,e6,p53,small molecule drug,rita,mathematical modeling

                Comments

                Comment on this article