7
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      The Effect of a Drug-delivery System Consisting of Soybean Phosphatidyl Choline and Medium-chain Monoacylglycerol on the Intestinal Permeability of Hexarelin in the Rat

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references22

          • Record: found
          • Abstract: found
          • Article: not found

          Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals.

          In addition to metabolic differences, the anatomical, physiological, and biochemical differences in the gastrointestinal (G.I.) tract of the human and common laboratory animals can cause significant variation in drug absorption from the oral route. Among the physiological factors, pH, bile, pancreatic juice, and mucus and fluid volume and content can modify dissolution rates, solubility, transit times, and membrane transport of drug molecules. The microbial content of the G.I. tract can significantly affect the reductive metabolism and enterohepatic circulation of drugs and colonic delivery of formulations. The transit time of dosage forms can be significantly different between species due to different dimensions and propulsive activities of the G.I. tract. The lipid/protein composition of the enterocyte membrane along the G.I. tract can alter binding and passive, active, and carrier-mediated transport of drugs. The location and number of Peyer's patches can also be important in the absorption of large molecules and particulate matter. While small animals, rats, mice, guinea pigs, and rabbits, are most suitable for determining the mechanism of drug absorption and bioavailability values from powder or solution formulations, larger animals, dogs, pigs, and monkeys, are used to assess absorption from formulations. The understanding of physiological, anatomical, and biochemical differences between the G.I. tracts of different animal species can lead to the selection of the correct animal model to mimic the bioavailability of compounds in the human. This article reviews the anatomical, physiological, and biochemical differences between the G.I. tracts of humans and commonly used laboratory animals.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Correlation of drug absorption with molecular surface properties.

            The correlation between dynamic surface properties of drug molecules and drug absorption in two common in vitro models of the intestinal wall (Caco-2 monolayers and rat intestinal segments) has been investigated. A homologous series of beta-adrenoreceptor antagonists were used as model compounds. Dynamic molecular surface properties, considering all low-energy conformations, of the compounds were calculated. The flexibility of the molecules was studied by molecular mechanics calculations (MM2) and the van der Waals' (vdW), and water accessible surface areas were calculated and averaged according to a Boltzmann distribution. Excellent correlations were obtained between the dynamic polar vdW surface areas and cell permeabilities in Caco-2 cells and rat ileum (r2 = 0.99 and 0.92, respectively). These correlations were stronger than those between calculated octanol/buffer partition coefficients (log Doct,7.4) and permeability (r2 = 0.80 and 0.73, respectively). Moreover, the calculated log Doct,7.4 values failed to rank the permeability coefficients through Caco-2 monolayers and rat ileum in the correct order. The results indicate that dynamic polar surface area is a promising alternative model for the prediction of oral drug absorption.
              Bookmark
              • Record: found
              • Abstract: not found
              • Article: not found

              Comparison between active and passive drug transport in human intestinal epithelial (caco-2) cells in vitro and human jejunum in vivo

                Bookmark

                Author and article information

                Journal
                Journal of Pharmacy and Pharmacology
                Wiley
                00223573
                May 1998
                May 1998
                April 12 2011
                : 50
                : 5
                : 467-473
                Article
                10.1111/j.2042-7158.1998.tb06187.x
                9643439
                f37ca2fb-e282-42dc-87de-c249ecc012d2
                © 2011

                http://doi.wiley.com/10.1002/tdm_license_1.1

                History

                Comments

                Comment on this article