21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Liquid biopsy genotyping in lung cancer: ready for clinical utility?

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Liquid biopsy is a blood test that detects evidence of cancer cells or tumor DNA in the circulation. Despite complicated collection methods and the requirement for technique-dependent platforms, it has generated substantial interest due, in part, to its potential to detect driver oncogenes such as epidermal growth factor receptor (EGFR) mutants in lung cancer. This technology is advancing rapidly and is being incorporated into numerous EGFR tyrosine kinase inhibitor (EGFR-TKI) development programs. It appears ready for integration into clinical care. Recent studies have demonstrated that biological fluids such as saliva and urine can also be used for detecting EGFR mutant DNA through application other user-friendly techniques. This review focuses on the clinical application of liquid biopsies to lung cancer genotyping, including EGFR and other targets of genotype-directed therapy and compares multiple platforms used for liquid biopsy.

          Related collections

          Most cited references82

          • Record: found
          • Abstract: found
          • Article: not found

          Detection and quantification of rare mutations with massively parallel sequencing.

          The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Although massively parallel sequencing instruments are in principle well suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. The keys to this approach, called the Safe-Sequencing System ("Safe-SeqS"), are (i) assignment of a unique identifier (UID) to each template molecule, (ii) amplification of each uniquely tagged template molecule to create UID families, and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are considered mutant ("supermutants") only if ≥95% of them contain the identical mutation. We illustrate the utility of this approach for determining the fidelity of a polymerase, the accuracy of oligonucleotides synthesized in vitro, and the prevalence of mutations in the nuclear and mitochondrial genomes of normal cells.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Detection of mutations in EGFR in circulating lung-cancer cells.

            The use of tyrosine kinase inhibitors to target the epidermal growth factor receptor gene (EGFR) in patients with non-small-cell lung cancer is effective but limited by the emergence of drug-resistance mutations. Molecular characterization of circulating tumor cells may provide a strategy for noninvasive serial monitoring of tumor genotypes during treatment. We captured highly purified circulating tumor cells from the blood of patients with non-small-cell lung cancer using a microfluidic device containing microposts coated with antibodies against epithelial cells. We performed EGFR mutational analysis on DNA recovered from circulating tumor cells using allele-specific polymerase-chain-reaction amplification and compared the results with those from concurrently isolated free plasma DNA and from the original tumor-biopsy specimens. We isolated circulating tumor cells from 27 patients with metastatic non-small-cell lung cancer (median number, 74 cells per milliliter). We identified the expected EGFR activating mutation in circulating tumor cells from 11 of 12 patients (92%) and in matched free plasma DNA from 4 of 12 patients (33%) (P=0.009). We detected the T790M mutation, which confers drug resistance, in circulating tumor cells collected from patients with EGFR mutations who had received tyrosine kinase inhibitors. When T790M was detectable in pretreatment tumor-biopsy specimens, the presence of the mutation correlated with reduced progression-free survival (7.7 months vs. 16.5 months, P<0.001). Serial analysis of circulating tumor cells showed that a reduction in the number of captured cells was associated with a radiographic tumor response; an increase in the number of cells was associated with tumor progression, with the emergence of additional EGFR mutations in some cases. Molecular analysis of circulating tumor cells from the blood of patients with lung cancer offers the possibility of monitoring changes in epithelial tumor genotypes during the course of treatment. 2008 Massachusetts Medical Society
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Identification of double-stranded genomic DNA spanning all chromosomes with mutated KRAS and p53 DNA in the serum exosomes of patients with pancreatic cancer.

              Exosomes are small vesicles (50-150 nm) of endocytic origin that are released by many different cell types. Exosomes in the tumor microenvironment may play a key role in facilitating cell-cell communication. Exosomes are reported to predominantly contain RNA and proteins. In this study, we investigated whether exosomes from pancreatic cancer cells and serum from patients with pancreatic ductal adenocarcinoma contain genomic DNA. Our results provide evidence that exosomes contain >10-kb fragments of double-stranded genomic DNA. Mutations in KRAS and p53 can be detected using genomic DNA from exosomes derived from pancreatic cancer cell lines and serum from patients with pancreatic cancer. In addition, using whole genome sequencing, we demonstrate that serum exosomes from patients with pancreatic cancer contain genomic DNA spanning all chromosomes. These results indicate that serum-derived exosomes can be used to determine genomic DNA mutations for cancer prediction, treatment, and therapy resistance.
                Bookmark

                Author and article information

                Journal
                Oncotarget
                Oncotarget
                Oncotarget
                ImpactJ
                Oncotarget
                Impact Journals LLC
                1949-2553
                14 March 2017
                12 January 2017
                : 8
                : 11
                : 18590-18608
                Affiliations
                1 Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
                2 Department of Pathology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
                3 School of Dentistry, University of California, Los Angeles, CA, USA
                4 Institute of Clinical Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
                Author notes
                Correspondence to: Chien-Chung Lin, joshcclin@ 123456gmail.com
                Article
                14613
                10.18632/oncotarget.14613
                5392351
                28099915
                f3836697-e21f-4a85-9603-37b966f24bc8
                Copyright: © 2017 Huang et al.

                This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

                History
                : 15 August 2016
                : 4 January 2017
                Categories
                Review

                Oncology & Radiotherapy
                ctdna,ctc,egfr mutation,t790m
                Oncology & Radiotherapy
                ctdna, ctc, egfr mutation, t790m

                Comments

                Comment on this article