19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: not found
      • Article: not found

      A fast and reliable technique for muscle activity detection from surface EMG signals

      IEEE Transactions on Biomedical Engineering
      Institute of Electrical and Electronics Engineers (IEEE)

      Read this article at

      ScienceOpenPublisherPubMed
      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Related collections

          Most cited references21

          • Record: found
          • Abstract: found
          • Article: not found

          Models of recruitment and rate coding organization in motor-unit pools.

          1. Isometric muscle force and the surface electromyogram (EMG) were simulated from a model that predicted recruitment and firing times in a pool of 120 motor units under different levels of excitatory drive. The EMG-force relationships that emerged from simulations using various schedules of recruitment and rate coding were compared with those observed experimentally to determine which of the modeled schemes were plausible representations of the actual organization in motor-unit pools. 2. The model was comprised of three elements: a motoneuron model, a motor-unit force model, and a model of the surface EMG. Input to the neuron model was an excitatory drive function representing the net synaptic input to motoneurons during voluntary muscle contractions. Recruitment thresholds were assigned such that many motoneurons had low thresholds and relatively few neurons had high thresholds. Motoneuron firing rate increased as a linear function of excitatory drive between recruitment threshold and peak firing rate levels. The sequence of discharge times for each motoneuron was simulated as a random renewal process. 3. Motor-unit twitch force was estimated as an impulse response of a critically damped, second-order system. Twitch amplitudes were assigned according to rank in the recruitment order, and twitch contraction times were inversely related to twitch amplitude. Nonlinear force-firing rate behavior was simulated by varying motor-unit force gain as a function of the instantaneous firing rate and the contraction time of the unit. The total force exerted by the muscle was computed as the sum of the motor-unit forces. 4. Motor-unit action potentials were simulated on the basis of estimates of the number and location of motor-unit muscle fibers and the propagation velocity of the fiber action potentials. The number of fibers innervated by each unit was assumed to be directly proportional to the twitch force. The area of muscle encompassing unit fibers was proportional to the number of fibers innervated, and the location of motor-unit territories were randomly assigned within the muscle cross section. Action-potential propagation velocities were estimated from an inverse function of contraction time. The train of discharge times predicted from the motoneuron model determined the occurrence of each motor-unit action potential. The surface EMG was synthesized as the sum of all motor-unit action-potential trains. 5. Two recruitment conditions were tested: narrow (limit of recruitment 70% maximum excitation).(ABSTRACT TRUNCATED AT 400 WORDS)
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            A comparison of computer-based methods for the determination of onset of muscle contraction using electromyography.

            P Hodges (1996)
            Little consensus exists in the literature regarding methods for determination of the onset of electromyographic (EMG) activity. The aim of this study was to compare the relative accuracy of a range of computer-based techniques with respect to EMG onset determined visually by an experienced examiner. Twenty-seven methods were compared which varied in terms of EMG processing (low pass filtering at 10, 50 and 500 Hz), threshold value (1, 2 and 3 SD beyond mean of baseline activity) and the number of samples for which the mean must exceed the defined threshold (20, 50 and 100 ms). Three hundred randomly selected trials of a postural task were evaluated using each technique. The visual determination of EMG onset was found to be highly repeatable between days. Linear regression equations were calculated for the values selected by each computer method which indicated that the onset values selected by the majority of the parameter combinations deviated significantly from the visually derived onset values. Several methods accurately selected the time of onset of EMG activity and are recommended for future use.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              A novel approach for precise simulation of the EMG signal detected by surface electrodes.

              We propose a new electromyogram generation and detection model. The volume conductor is described as a nonhomogeneous (layered) and anisotropic medium constituted by muscle, fat and skin tissues. The surface potential detected in space domain is obtained from the application of a two-dimensional spatial filter to the input current density source. The effects of electrode configuration, electrode size and inclination of the fibers with respect to the detection system are included in the transfer function of the filter. Computation of the signal in space domain is performed by applying the Radon transform; this permits to draw considerations about spectral dips and clear misunderstandings in previous theoretical derivations. The effects of generation and extinction of the action potentials at the fiber end plate and at the tendons are included by modeling the source current, without any approximation of its shape, as a function of space and time and by using again the Radon transform. The approach, based on the separation of the temporal and spatial properties of the muscle fiber action potential and of the volume conductor, includes the capacitive tissue properties.
                Bookmark

                Author and article information

                Journal
                10.1109/TBME.2003.808829
                12669988

                Comments

                Comment on this article