19
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Monitoring of oxidative and metabolic stress during cardiac surgery by means of breath biomarkers: an observational study

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Background

          Volatile breath biomarkers provide a non-invasive window to observe physiological and pathological processes in the body. This study was intended to assess the impact of heart surgery with extracorporeal circulation (ECC) onto breath biomarker profiles. Special attention was attributed to oxidative or metabolic stress during surgery and extracorporeal circulation, which can cause organ damage and poor outcome.

          Methods

          24 patients undergoing cardiac surgery with extracorporeal circulation were enrolled into this observational study. Alveolar breath samples (10 mL) were taken after induction of anesthesia, after sternotomy, 5 min after end of ECC, and 30, 60, 90, 120 and 150 min after end of surgery. Alveolar gas samples were withdrawn from the circuit under visual control of expired CO 2. Inspiratory samples were taken near the ventilator inlet. Volatile substances in breath were preconcentrated by means of solid phase micro extraction, separated by gas chromatography, detected and identified by mass spectrometry.

          Results

          Mean exhaled concentrations of acetone, pentane and isoprene determined in this study were in accordance with results from the literature. Exhaled substance concentrations showed considerable inter-individual variation, and inspired pentane concentrations sometimes had the same order of magnitude than expired values. This is the reason why, concentrations were normalized by the values measured 120 min after surgery. Exhaled acetone concentrations increased slightly after sternotomy and markedly after end of ECC. Exhaled acetone concentrations exhibited positive correlation to serum C-reactive protein concentrations and to serum troponine-T concentrations. Exhaled pentane concentrations increased markedly after sternotomy and dropped below initial values after ECC. Breath pentane concentrations showed correlations with serum creatinine (CK) levels. Patients with an elevated CK-MB (myocardial&brain)/CK ratio had also high concentrations of pentane in exhaled air. Exhaled isoprene concentrations raised significantly after sternotomy and decreased to initial levels at 30 min after end of ECC. Exhaled isoprene concentrations showed a correlation with cardiac output.

          Conclusion

          Oxidative and metabolic stress during cardiac surgery could be assessed continuously and non-invasively by means of breath analysis. Correlations between breath acetone profiles and clinical conditions underline the potential of breath biomarker monitoring for diagnostics and timely initiation of life saving therapy.

          Related collections

          Most cited references31

          • Record: found
          • Abstract: found
          • Article: not found

          A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS.

          Selected ion flow tube mass spectrometry, SIFT-MS, has been used to monitor the volatile compounds in the exhaled breath of 30 volunteers (19 males, 11 females) over a 6 month period. Volunteers provided breath samples each week between 8:45 am and 1 pm (before lunch), and the concentrations of several trace compounds were obtained. In this paper the focus is on ammonia, acetone and propanol. It was found that the concentration distributions of these compounds in breath were close to log-normal. The median ammonia level estimated as a geometric mean for all samples was 833 parts per billion (ppb) with a multiplicative standard deviation of 1.62, the values ranging from 248 to 2935 ppb. Breath ammonia clearly increased with increasing age in this volunteer cohort. The geometric mean acetone level for all samples was 477 parts per billion (ppb) with a multiplicative standard deviation of 1.58, the values ranging from 148 to 2744 ppb. The median propanol level for all samples was 18 ppb, the values ranging from 0 to 135 ppb. A weak but significant correlation between breath propanol and acetone levels is apparent in the data. The findings indicate the potential value of SIFT-MS as a non-invasive breath analysis technique for investigating volatile compounds in human health and in the diseased state.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Breath ethanol and acetone as indicators of serum glucose levels: an initial report.

            Many volatile organic compounds are present in exhaled breath and may represent by-products of endogenous biological processes. Ethanol is produced via alcoholic fermentation of glucose by gut bacteria and yeast, while acetone derives from oxidations of free fatty acids, influenced by glucose metabolism. We hypothesized that the integrated analysis of breath ethanol and acetone would provide a good approximation of the blood glucose profile during a glucose load. We collected simultaneous exhaled breath gas, ambient air, and serum glucose and insulin samples from 10 healthy volunteers at baseline and during an oral glucose tolerance test (OGTT) (ingestion of 75 g of glucose followed by 120 min of sampling). Gas samples were analyzed by gas chromatography/mass spectrometry. Mean glucose values displayed a typical OGTT pattern (rapid increase, peak values at 30-60 min, and gradual return to near baseline by 120 min). Breath ethanol displayed a similar pattern early in the test, with peak values at 30 min; this was followed by a fast return to basal levels by 60 min. Breath acetone decreased progressively below basal levels, with lowest readings obtained at 120 min. A multiple regression analysis of glucose, ethanol, and acetone was used to estimate glucose profiles that correlated with measured glucose values with an average individual correlation coefficient of 0.70, and not lower than 0.41 in any subject. The integrated analysis of multiple exhaled gases may serve as a marker of blood glucose levels. Further studies are needed to assess the usefulness of this method in different populations.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Solid-phase microextraction for the analysis of human breath.

              Solid-phase microextraction (SPME) has been applied to the quantitative determination of ethanol, acetone, and isoprene in human breath. The method involves extraction and preconcentration with a fused silica fiber coated with a polymeric stationary phase, desorption at 200 degrees C, and assay by gas chromatography/mass spectrometry. Three different fiber coatings have been evaluated with regard to sensitivity, linear range, precision, and detection limits. Typical RSD values in the range 2%-6% could be obtained, depending on the fiber coating and the compound investigated. The calibration curves for the compounds are reproducible and linear over the concentration ranges found in human breath samples. The method is capable of detecting concentrations of acetone and isoprene reported for healthy subjects. The influence of temperature and humidity on the extraction process has been studied in detail. A linear relationship between log K versus 1/T allows the calibration of the method for any given temperature. The device is portable, economical, and easy to use in patient sampling.
                Bookmark

                Author and article information

                Journal
                J Cardiothorac Surg
                Journal of Cardiothoracic Surgery
                BioMed Central
                1749-8090
                2007
                18 September 2007
                : 2
                : 37
                Affiliations
                [1 ]Department of Anesthesia and Intensive Care, University of Rostock, Schillingallee 35, 18057 Rostock, Germany
                Article
                1749-8090-2-37
                10.1186/1749-8090-2-37
                2100047
                17877828
                f385b734-94d8-4977-ba26-a00e992802ab
                Copyright © 2007 Pabst et al; licensee BioMed Central Ltd.

                This is an Open Access article distributed under the terms of the Creative Commons Attribution License ( http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 21 June 2007
                : 18 September 2007
                Categories
                Research Article

                Surgery
                Surgery

                Comments

                Comment on this article