39
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Atomically Sharp Interface in an h-BN-epitaxial graphene van der Waals Heterostructure

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Stacking various two-dimensional atomic crystals is a feasible approach to creating unique multilayered van der Waals heterostructures with tailored properties. Herein for the first time, we present a controlled preparation of large-area h-BN/graphene heterostructures via a simple chemical deposition of h-BN layers on epitaxial graphene/SiC(0001). Van der Waals forces, which are responsible for the cohesion of the multilayer system, give rise to an abrupt interface without interdiffusion between graphene and h-BN, as shown by X-ray Photoemission Spectroscopy (XPS) and direct observation using scanning and High-Resolution Transmission Electron Microscopy (STEM/HRTEM). The electronic properties of graphene, such as the Dirac cone, remain intact and no significant charge transfer i.e. doping, is observed. These results are supported by Density Functional Theory (DFT) calculations. We demonstrate that the h-BN capped graphene allows the fabrication of vdW heterostructures without altering the electronic properties of graphene.

          Related collections

          Most cited references29

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Van der Waals heterostructures

          Research on graphene and other two-dimensional atomic crystals is intense and likely to remain one of the hottest topics in condensed matter physics and materials science for many years. Looking beyond this field, isolated atomic planes can also be reassembled into designer heterostructures made layer by layer in a precisely chosen sequence. The first - already remarkably complex - such heterostructures (referred to as 'van der Waals') have recently been fabricated and investigated revealing unusual properties and new phenomena. Here we review this emerging research area and attempt to identify future directions. With steady improvement in fabrication techniques, van der Waals heterostructures promise a new gold rush, rather than a graphene aftershock.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Boron nitride substrates for high-quality graphene electronics

            Graphene devices on standard SiO2 substrates are highly disordered, exhibiting characteristics far inferior to the expected intrinsic properties of graphene[1-12]. While suspending graphene above the substrate yields substantial improvement in device quality[13,14], this geometry imposes severe limitations on device architecture and functionality. Realization of suspended-like sample quality in a substrate supported geometry is essential to the future progress of graphene technology. In this Letter, we report the fabrication and characterization of high quality exfoliated mono- and bilayer graphene (MLG and BLG) devices on single crystal hexagonal boron nitride (h-BN) substrates, by a mechanical transfer process. Variable-temperature magnetotransport measurements demonstrate that graphene devices on h-BN exhibit enhanced mobility, reduced carrier inhomogeneity, and reduced intrinsic doping in comparison with SiO2-supported devices. The ability to assemble crystalline layered materials in a controlled way sets the stage for new advancements in graphene electronics and enables realization of more complex graphene heterostructres.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal.

              The demand for compact ultraviolet laser devices is increasing, as they are essential in applications such as optical storage, photocatalysis, sterilization, ophthalmic surgery and nanosurgery. Many researchers are devoting considerable effort to finding materials with larger bandgaps than that of GaN. Here we show that hexagonal boron nitride (hBN) is a promising material for such laser devices because it has a direct bandgap in the ultraviolet region. We obtained a pure hBN single crystal under high-pressure and high-temperature conditions, which shows a dominant luminescence peak and a series of s-like exciton absorption bands around 215 nm, proving it to be a direct-bandgap material. Evidence for room-temperature ultraviolet lasing at 215 nm by accelerated electron excitation is provided by the enhancement and narrowing of the longitudinal mode, threshold behaviour of the excitation current dependence of the emission intensity, and a far-field pattern of the transverse mode.
                Bookmark

                Author and article information

                Journal
                Sci Rep
                Sci Rep
                Scientific Reports
                Nature Publishing Group
                2045-2322
                20 November 2015
                2015
                : 5
                : 16465
                Affiliations
                [1 ]Laboratoire de Photonique et de Nanostructures (LPN), CNRS, Université Paris-Saclay , route de Nozay, F-91460 Marcoussis, France
                [2 ]Synchrotron-SOLEIL, Saint-Aubin, BP48 , F91192 Gif sur Yvette Cedex, France
                [3 ]SPEC, CEA, CNRS, Université Paris Saclay , CEA Saclay, 91191, Gif-Sur-Yvette, France
                [4 ]Laboratoire des Multimatériaux et Interfaces, UMR CNRS 5615, Université Lyon I, Université de Lyon , France
                [5 ]GeePs, CNRS UMR8507, CentraleSupelec, Univ Paris-Sud, Sorbonne Universités-UPMC Univ Paris 06 , 11 rue Joliot-Curie, Plateau de Moulon, 91192 Gif-sur-Yvette Cedex, France
                Author notes
                Article
                srep16465
                10.1038/srep16465
                4653732
                26585245
                f3872f69-8e7e-4258-92c7-74ad316e9cb5
                Copyright © 2015, Macmillan Publishers Limited

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 09 April 2015
                : 05 October 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article