103
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Cellular Mechanisms Underlying Eosinophilic and Neutrophilic Airway Inflammation in Asthma

      review-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Asthma is a phenotypically heterogeneous chronic disease of the airways, characterized by either predominant eosinophilic or neutrophilic, or even mixed eosinophilic/neutrophilic inflammatory patterns. Eosinophilic inflammation can be associated with the whole spectrum of asthma severity, ranging from mild-to-moderate to severe uncontrolled disease, whereas neutrophilic inflammation occurs mostly in more severe asthma. Eosinophilic asthma includes either allergic or nonallergic phenotypes underlying immune responses mediated by T helper (Th)2 cell-derived cytokines, whilst neutrophilic asthma is mostly dependent on Th17 cell-induced mechanisms. These immune-inflammatory profiles develop as a consequence of a functional impairment of T regulatory (Treg) lymphocytes, which promotes the activation of dendritic cells directing the differentiation of distinct Th cell subsets. The recent advances in the knowledge of the cellular and molecular mechanisms underlying asthmatic inflammation are contributing to the identification of novel therapeutic targets, potentially suitable for the implementation of future improvements in antiasthma pharmacologic treatments.

          Related collections

          Most cited references70

          • Record: found
          • Abstract: found
          • Article: not found

          Mepolizumab for severe eosinophilic asthma (DREAM): a multicentre, double-blind, placebo-controlled trial.

          Some patients with severe asthma have recurrent asthma exacerbations associated with eosinophilic airway inflammation. Early studies suggest that inhibition of eosinophilic airway inflammation with mepolizumab-a monoclonal antibody against interleukin 5-is associated with a reduced risk of exacerbations. We aimed to establish efficacy, safety, and patient characteristics associated with the response to mepolizumab. We undertook a multicentre, double-blind, placebo-controlled trial at 81 centres in 13 countries between Nov 9, 2009, and Dec 5, 2011. Eligible patients were aged 12-74 years, had a history of recurrent severe asthma exacerbations, and had signs of eosinophilic inflammation. They were randomly assigned (in a 1:1:1:1 ratio) to receive one of three doses of intravenous mepolizumab (75 mg, 250 mg, or 750 mg) or matched placebo (100 mL 0·9% NaCl) with a central telephone-based system and computer-generated randomly permuted block schedule stratified by whether treatment with oral corticosteroids was required. Patients received 13 infusions at 4-week intervals. The primary outcome was the rate of clinically significant asthma exacerbations, which were defined as validated episodes of acute asthma requiring treatment with oral corticosteroids, admission, or a visit to an emergency department. Patients, clinicians, and data analysts were masked to treatment assignment. Analyses were by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT01000506. 621 patients were randomised: 159 were assigned to placebo, 154 to 75 mg mepolizumab, 152 to 250 mg mepolizumab, and 156 to 750 mg mepolizumab. 776 exacerbations were deemed to be clinically significant. The rate of clinically significant exacerbations was 2·40 per patient per year in the placebo group, 1·24 in the 75 mg mepolizumab group (48% reduction, 95% CI 31-61%; p<0·0001), 1·46 in the 250 mg mepolizumab group (39% reduction, 19-54%; p=0·0005), and 1·15 in the 750 mg mepolizumab group (52% reduction, 36-64%; p<0·0001). Three patients died during the study, but the deaths were not deemed to be related to treatment. Mepolizumab is an effective and well tolerated treatment that reduces the risk of asthma exacerbations in patients with severe eosinophilic asthma. GlaxoSmithKline. Copyright © 2012 Elsevier Ltd. All rights reserved.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            T-helper type 2-driven inflammation defines major subphenotypes of asthma.

            T-helper type 2 (Th2) inflammation, mediated by IL-4, IL-5, and IL-13, is considered the central molecular mechanism underlying asthma, and Th2 cytokines are emerging therapeutic targets. However, clinical studies increasingly suggest that asthma is heterogeneous. To determine whether this clinical heterogeneity reflects heterogeneity in underlying molecular mechanisms related to Th2 inflammation. Using microarray and polymerase chain reaction analyses of airway epithelial brushings from 42 patients with mild-to-moderate asthma and 28 healthy control subjects, we classified subjects with asthma based on high or low expression of IL-13-inducible genes. We then validated this classification and investigated its clinical implications through analyses of cytokine expression in bronchial biopsies, markers of inflammation and remodeling, responsiveness to inhaled corticosteroids, and reproducibility on repeat examination. Gene expression analyses identified two evenly sized and distinct subgroups, "Th2-high" and "Th2-low" asthma (the latter indistinguishable from control subjects). These subgroups differed significantly in expression of IL-5 and IL-13 in bronchial biopsies and in airway hyperresponsiveness, serum IgE, blood and airway eosinophilia, subepithelial fibrosis, and airway mucin gene expression (all P < 0.03). The lung function improvements expected with inhaled corticosteroids were restricted to Th2-high asthma, and Th2 markers were reproducible on repeat evaluation. Asthma can be divided into at least two distinct molecular phenotypes defined by degree of Th2 inflammation. Th2 cytokines are likely to be a relevant therapeutic target in only a subset of patients with asthma. Furthermore, current models do not adequately explain non-Th2-driven asthma, which represents a significant proportion of patients and responds poorly to current therapies.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161.

              Innate lymphoid cells (ILCs) are emerging as a family of effectors and regulators of innate immunity and tissue remodeling. Interleukin 22 (IL-22)- and IL-17-producing ILCs, which depend on the transcription factor RORγt, express CD127 (IL-7 receptor α-chain) and the natural killer cell marker CD161. Here we describe another lineage-negative CD127(+)CD161(+) ILC population found in humans that expressed the chemoattractant receptor CRTH2. These cells responded in vitro to IL-2 plus IL-25 and IL-33 by producing IL-13. CRTH2(+) ILCs were present in fetal and adult lung and gut. In fetal gut, these cells expressed IL-13 but not IL-17 or IL-22. There was enrichment for CRTH2(+) ILCs in nasal polyps of chronic rhinosinusitis, a typical type 2 inflammatory disease. Our data identify a unique type of human ILC that provides an innate source of T helper type 2 (T(H)2) cytokines.
                Bookmark

                Author and article information

                Journal
                Mediators Inflamm
                Mediators Inflamm
                MI
                Mediators of Inflammation
                Hindawi Publishing Corporation
                0962-9351
                1466-1861
                2015
                23 March 2015
                : 2015
                : 879783
                Affiliations
                1Department of Medical and Surgical Sciences, University “Magna Græcia” of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
                2Department of Medicine and Surgery, University of Salerno, Via Salvador Allende, Baronissi, 84081 Salerno, Italy
                3Department of Health Science, University “Magna Græcia” of Catanzaro, Viale Europa, Località Germaneto, 88100 Catanzaro, Italy
                4Department of Cardiothoracic and Respiratory Sciences, 2nd University of Naples, Via Leonardo Bianchi, 80131 Naples, Italy
                Author notes
                *Girolamo Pelaia: pelaia@ 123456unicz.it

                Academic Editor: Helen C. Steel

                Author information
                http://orcid.org/0000-0001-9288-8913
                http://orcid.org/0000-0002-0210-6349
                Article
                10.1155/2015/879783
                4386709
                25878402
                f38b1874-051a-4026-abcd-3b2c3cc54a8b
                Copyright © 2015 Girolamo Pelaia et al.

                This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

                History
                : 13 January 2015
                : 23 February 2015
                Categories
                Review Article

                Immunology
                Immunology

                Comments

                Comment on this article