42
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Mechanism of erosion of nanostructured porous silicon drug carriers in neoplastic tissues

      research-article

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          Nanostructured porous silicon (PSi) is emerging as a promising platform for drug delivery owing to its biocompatibility, degradability and high surface area available for drug loading. The ability to control PSi structure, size and porosity enables programming its in vivo retention, providing tight control over embedded drug release kinetics. In this work, the relationship between the in vitro and in vivo degradation of PSi under (pre)clinically relevant conditions, using breast cancer mouse model, is defined. We show that PSi undergoes enhanced degradation in diseased environment compared with healthy state, owing to the upregulation of reactive oxygen species (ROS) in the tumour vicinity that oxidize the silicon scaffold and catalyse its degradation. We further show that PSi degradation in vitro and in vivo correlates in healthy and diseased states when ROS-free or ROS-containing media are used, respectively. Our work demonstrates that understanding the governing mechanisms associated with specific tissue microenvironment permits predictive material performance.

          Abstract

          The degradation of materials used in biological applications has an important bearing on their long term performance. Here, the authors show how porous silicon nanoparticle degradation can be accelerated in vivo through the influence of local tissue pathology, likely influencing drug delivery performance.

          Related collections

          Most cited references34

          • Record: found
          • Abstract: found
          • Article: not found

          Biodegradable luminescent porous silicon nanoparticles for in vivo applications.

          Nanomaterials that can circulate in the body hold great potential to diagnose and treat disease. For such applications, it is important that the nanomaterials be harmlessly eliminated from the body in a reasonable period of time after they carry out their diagnostic or therapeutic function. Despite efforts to improve their targeting efficiency, significant quantities of systemically administered nanomaterials are cleared by the mononuclear phagocytic system before finding their targets, increasing the likelihood of unintended acute or chronic toxicity. However, there has been little effort to engineer the self-destruction of errant nanoparticles into non-toxic, systemically eliminated products. Here, we present luminescent porous silicon nanoparticles (LPSiNPs) that can carry a drug payload and of which the intrinsic near-infrared photoluminescence enables monitoring of both accumulation and degradation in vivo. Furthermore, in contrast to most optically active nanomaterials (carbon nanotubes, gold nanoparticles and quantum dots), LPSiNPs self-destruct in a mouse model into renally cleared components in a relatively short period of time with no evidence of toxicity. As a preliminary in vivo application, we demonstrate tumour imaging using dextran-coated LPSiNPs (D-LPSiNPs). These results demonstrate a new type of multifunctional nanostructure with a low-toxicity degradation pathway for in vivo applications.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: not found

            Persistent oxidative stress in cancer.

            DNA of cancers such as renal cell carcinoma and mammary invasive ductal carcinoma, is persistently exposed to more oxidative stress than that of adjacent normal tissue. We suggest that the concept of 'persistent oxidative stress in cancer' may open up a new research area, explaining part of the characteristic tumor biology of cancer such as activated transcription factors and proto-oncogenes, genomic instability, chemotherapy-resistance, invasion and metastasis.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: not found

              Apoptosis and necrosis: two distinct events induced, respectively, by mild and intense insults with N-methyl-D-aspartate or nitric oxide/superoxide in cortical cell cultures.

              N-Methyl-D-aspartate (NMDA) receptor-mediated neurotoxicity may depend, in part, on the generation of nitric oxide (NO.) and superoxide anion (O2.-), which react to form peroxynitrite (OONO-). This form of neurotoxicity is thought to contribute to a final common pathway of injury in a wide variety of acute and chronic neurologic disorders, including focal ischemia, trauma, epilepsy, Huntington disease, Alzheimer disease, amyotrophic lateral scelerosis, AIDS dementia, and other neurodegenerative diseases. Here, we report that exposure of cortical neurons to relatively short durations or low concentrations of NMDA, S-nitrosocysteine, or 3-morpholinosydnonimine, which generate low levels of peroxynitrite, induces a delayed form of neurotoxicity predominated by apoptotic features. Pretreatment with superoxide dismutase and catalase to scavenge O2.- partially prevents the apoptotic process triggered by S-nitrosocysteine or 3-morpholinosydnonimine. In contrast, intense exposure to high concentrations of NMDA or peroxynitrite induces necrotic cell damage characterized by acute swelling and lysis, which cannot be ameliorated by superoxide dismutase and catalase. Thus, depending on the intensity of the initial insult, NMDA or nitric oxide/superoxide can result in either apoptotic or necrotic neuronal cell damage.
                Bookmark

                Author and article information

                Journal
                Nat Commun
                Nat Commun
                Nature Communications
                Nature Pub. Group
                2041-1723
                11 February 2015
                : 6
                : 6208
                Affiliations
                [1 ]The Inter-Departmental Program of Biotechnology, Technion—Israel Institute of Technology , Haifa 32000, Israel
                [2 ]Institute for Medical Engineering and Science, Massachusetts Institute of Technology , Cambridge, Massachusetts 02139, USA
                [3 ]Department of Biotechnology and Food Engineering, Technion—Israel Institute of Technology , Haifa 32000, Israel
                [4 ]Russell Berrie Nanotechnology Institute, Technion—Israel Institute of Technology , Haifa 32000, Israel
                [5 ]Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School , Boston 02115, USA
                Author notes
                Article
                ncomms7208
                10.1038/ncomms7208
                4339882
                25670235
                f3ab348a-1231-4940-841f-420778f36544
                Copyright © 2015, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved.

                This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

                History
                : 28 November 2014
                : 06 January 2015
                Categories
                Article

                Uncategorized
                Uncategorized

                Comments

                Comment on this article