21
views
0
recommends
+1 Recommend
0 collections
    0
    shares
      • Record: found
      • Abstract: found
      • Article: found
      Is Open Access

      Background independent condensed matter models for quantum gravity

      Preprint
      ,

      Read this article at

      Bookmark
          There is no author summary for this article yet. Authors can add summaries to their articles on ScienceOpen to make them more accessible to a non-specialist audience.

          Abstract

          A number of recent proposals for a quantum theory of gravity are based on the idea that spacetime geometry and gravity are derivative concepts and only apply at an approximate level. There are two fundamental challenges to any such approach. At the conceptual level, there is a clash between the "timelessness" of general relativity and emergence. Second, the lack of a fundamental spacetime makes difficult the straightforward application of well-known methods of statistical physics to the problem. We recently initiated a study of such problems using spin systems based on evolution of quantum networks with no a priori geometric notions as models for emergent geometry and gravity. In this article we review two such models. The first is a model of emergent (flat) space and matter and we show how to use methods from quantum information theory to derive features such as speed of light from a non-geometric quantum system. The second model exhibits interacting matter and geometry, with the geometry defined by the behavior of matter. This model has primitive notions of gravitational attraction which we illustrate with a toy black hole, and exhibits entanglement between matter and geometry and thermalization of the quantum geometry.

          Related collections

          Most cited references5

          • Record: found
          • Abstract: found
          • Article: found
          Is Open Access

          Group Field Theory: An overview

          We give a brief overview of the properties of a higher dimensional generalization of matrix model which arises naturally in the context of a background independent approach to quantum gravity, the so called group field theory. We show that this theory leads to a natural proposal for the physical scalar product of quantum gravity. We also show in which sense this theory provides a third quantization point of view on quantum gravity.
            Bookmark
            • Record: found
            • Abstract: found
            • Article: found
            Is Open Access

            Quantum Graphity: a model of emergent locality

            Quantum graphity is a background independent model for emergent locality, spatial geometry and matter. The states of the system correspond to dynamical graphs on N vertices. At high energy, the graph describing the system is highly connected and the physics is invariant under the full symmetric group acting on the vertices. We present evidence that the model also has a low-energy phase in which the graph describing the system breaks permutation symmetry and appears to be ordered, low-dimensional and local. Consideration of the free energy associated with the dominant terms in the dynamics shows that this low-energy state is thermodynamically stable under local perturbations. The model can also give rise to an emergent U(1) gauge theory in the ground state by the string-net condensation mechanism of Levin and Wen. We also reformulate the model in graph-theoretic terms and compare its dynamics to some common graph processes.
              Bookmark
              • Record: found
              • Abstract: found
              • Article: found
              Is Open Access

              A quantum Bose-Hubbard model with evolving graph as toy model for emergent spacetime

              We present a toy model for interacting matter and geometry that explores quantum dynamics in a spin system as a precursor to a quantum theory of gravity. The model has no a priori geometric properties, instead, locality is inferred from the more fundamental notion of interaction between the matter degrees of freedom. The interaction terms are themselves quantum degrees of freedom so that the structure of interactions and hence the resulting local and causal structures are dynamical. The system is a Hubbard model where the graph of the interactions is a set of quantum evolving variables. We show entanglement between spatial and matter degrees of freedom. We study numerically the quantum system and analyze its entanglement dynamics. We analyze the asymptotic behavior of the classical model. Finally, we discuss analogues of trapped surfaces and gravitational attraction in this simple model.
                Bookmark

                Author and article information

                Journal
                26 November 2010
                Article
                10.1088/1367-2630/13/9/095006
                1011.5754
                f3b2248d-1107-4176-b3c2-e5ed9cc65a5d

                http://arxiv.org/licenses/nonexclusive-distrib/1.0/

                History
                Custom metadata
                New J.Phys.13:095006,2011
                Contribution submitted to the focus issue of the New Journal of Physics on "Classical and Quantum Analogues for Gravitational Phenomena and Related Effects", R. Schuetzhold, U. Leonhardt and C. Maia, Eds
                gr-qc hep-th quant-ph

                Comments

                Comment on this article