Anja Schork a , b , c , * , Bernhard N. Bohnert a , b , c , Nils Heyne a , b , c , Andreas L. Birkenfeld a , b , c , Ferruh Artunc a , b , c
02 December 2020
Kidney and Blood Pressure Research
Bioimpedance spectroscopy, Chronic kidney disease, Overhydration, Progression, Proteasuria
Background: Overhydration (OH) is common in chronic kidney disease (CKD) and might be related to the excretion of urinary serine proteases. Progression of CKD is associated with proteinuria; however, the interrelations of urinary serine proteases, OH, and progression of CKD remain unclear. Methods: In n = 179 patients with stable nondialysis-dependent CKD of all stages, OH was measured using bioimpedance spectroscopy (Body Composition Monitor; Fresenius), and urinary serine protease activity was determined using the peptide substrate S-2302. After a median follow-up of 5.9 (IQR: 3.9–6.5) years, progression to end-stage renal disease (ESRD) was analyzed retrospectively. Results: OH correlated with baseline MDRD-eGFR, urinary albumin creatinine ratio (ACR), and urinary aprotinin-sensitive serine protease activity. Progression to ESRD occurred in n = 33 patients (19%) and correlated with OH and urinary serine protease activity as well as MDRD-eGFR and ACR. Patients were divided into 2 groups determined by cutoff values from receiver operating characteristics for MDRD-eGFR (32 mL/min/1.73 m<sup>2</sup>), ACR (43 mg/g creatinine), urinary serine protease activity (0.9 RU/g creatinine), and OH (1 L/1.73 m<sup>2</sup>). Across these cutoff values, Kaplan-Meier curves for renal survival showed significant separations of the groups. In Cox regression adjusted for MDRD-eGFR, ACR, P-NT-pro-BNP, systolic blood pressure, and diabetes mellitus, patients with OH >1 L/1.73 m<sup>2</sup> had a 3.32 (95% CI: 1.26–8.76)-fold higher risk for progression to ESRD. Conclusions: Our results corroborate that OH detected by bioimpedance spectroscopy in CKD patients is an independent risk factor for progression to ESRD in addition to GFR and albuminuria. Urinary serine protease activity is associated with OH and progression of CKD and provides a possible underlying mechanism.
This article is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND). Usage and distribution for commercial purposes as well as any distribution of modified material requires written permission. Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug. Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.